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Introduction

A fundamental object in algebra is the group, being fundamentally related to the
notion of symmetry. The groups of our concern are the Hecke congruence subgroups
"o (V) of the modular group SLy (Z); that is the groups of 2 x 2 - matrices congruent
to an upper triangular matrix modulo N. They occur in the study of modular forms.
['o (N) contains the principal congruence subgroup I' (N) of matrices congruent to
the identity matrix modulo V.

In the first chapter we show that for integers M, N with M|N and respective prime
decompositions M = [/, pi* and N = []I_, p, the identity

Ty (M) /1 (N) = [ [T (62) /7 65

holds. We further present various index formulas for quotients of congruence sub-
groups by I' (V).

The main result of the first chapter is a new proof of this result.

Theorem. Any subgroup of the modular group containing a Hecke congruence sub-

group To (N) is already of Hecke type.

This was first proved in [Newb5|, however with a small mistake. At the end of
this chapter a corrected version of that proof is presented.
In the second chapter a minimal set of generators of I'g (V) is listed, together with
an investigation of the special case where N is a prime power. We prove that the
generating set in the prime power case is similar to the generating set of T'g (V)
when N is prime.
Let D be a discriminant form such that the level of D divides the positive integer
N. D decomposes uniquely into a direct sum of p-groups. This can be refined into
g-groups D[q] = {y € D| ¢y = 0} with ¢ = p* for a prime p dividing N. We
introduce parameters n, > 1, the rank of D[¢] and ¢, € {£1} depending on the
quadratic form of D restricted to D[gq]. We write this orthogonal decomposition as

D= (—B D|q"™]

qeqQ



assuming a suitable index set () < Z. We prove that

C[D] = K C[D[g""]].

qeqQ

The Weil representation of SLs (Z),
pp : Sl (Z) — GL(C|[D]),

is defined via its action on the standard generators of SLy (Z). We prove that it

respects the tensor product decomposition of C[D] in the sense that the diagram

SLy (Z) ~

®qpfm

GL(®, C[Dlg™])

commutes. The main result of the last chapter is a proof of this theorem.

Theorem. If the level of D divides the positive integer N, then the matric M =

b
(a d) € I'y (N) acts in the Weil representation as
c

Me" = xp (M) e (—bd~*/2) e, (%)

This is done by verifying (%) for the generators of I'y (N) presented in the second
chapter, and using the commutativity of the above diagram. This result was known

before, but proved differently.
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Chapter 1

Structure Results for Congruence

Subgroups

In the first section of this chapter a few introductory remarks and definitions are
given. The second section contains a decomposition of T'y (M) /T (N) into a direct
product. Afterwards a few index formulas for certain congruence subgroups are
exhibited. The most important section is the fourth one, containing the proof that
any group I' such that Iy (V) < T' < SLy (Z) is already equal to Iy (D) for some
D|N. In the last section a corrected version of Newman’s different proof of the same

result is presented.

1.1 Basic Definitions and Remarks

Let N be a positive integer. For the rings R = Z and R = Z/NZ we define SL; (R)
to be the group of all 2 x 2 matrices with entries in R and determinant one. SL, (Z)
is also called the (full) modular group. Tt plays a fundamental role in the theory of

modular forms. The group

T (N) :{(Z Z) e SLy (Z) | (Z Z) = ((1) i’) mod N}

of matrices in SLy (Z) that are entry-wise congruent to the identity matrix modulo
N is called principal congruence subgroup of level N. Any subgroup of SLy (Z) that

contains some I' (N) is called a congruence subgroup. For instance, the group

Ty (N) = {<Z Z) € SLy (Z) | (Z Z) - ((1) 1) mod N}
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of matrices in SLy (Z) equivalent to a unitriangular matrix modulo N is a congruence

subgroup. Important in this thesis is the group

Ty (N) ::{(Z Z) € SL, (Z) | ¢ = 0 mod N}

of matrices in SLs (Z) equivalent to a triangluar matrix modulo N. Note that
[o(1) = SLo(Z). T'o(N) is called congruence subgroup of Hecke type or Hecke
congruence subgroup. In literature T'; (IV) is sometimes also said to be of Hecke
type.
One easily checks that 'y (N) is a congruence subgroup, that I'(N) is normal in
SLs (Z), and that

SLy (Z) /T (N) = SLy (Z/NZ), (1.1)
since I" (IV) is the kernel of reduction modulo N in each component. A proof can
be found in [Miy89, p. 104].
The following theorem is well-known. It can for instance be found in [Miy89, p. 96|,

and it will be referred to in the third chapter.

Theorem 1.1. The modular group SLy (Z) is generated by the matrices

T=<1 1) and5’=<0 _1>.
0 1 10
1.2 Factorization of I'y (M) /T (N)

AsI'(N) is normal in SLy (Z), and I' (N) < T'g (N) < I'g (M) whenever M|N, ' (N)
is also normal in I'g (M). In this section we use the Chinese Remainder Theorem
(CRT) to decompose the quotient I'g (M) /T (N) into a direct product of factors of
the form Ig (p?) /T ().

Theorem 1.2. Let N = [[;_, pi* be the prime decomposition of N. Then

)

Maty(Z/NZ) = ﬁ Mats(Z/p ) (1.2)
and .
SLy (Z/NZ) = | | SL2 (Z/p{'Z.) . (1.3)

Proof. By the (CRT), the mapping
Y Z/NZ— [ | Z/p}'Z,
i=1

(73

x +— (zmod p{’, ...,z mod pi)
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is a group isomorphism. Then also

¢ : Maty(Z/NZ) — | [ Mato(Z/p{"Z),

i=1

a b a b a b
— mod pi’, ..., mod pi™ |,

yields an isomorphism, the one needed for (1.2). The restriction of ¢ to SLy (Z/NZ)
is an isomorphism between SLy (Z/NZ) and | [, SLs (Z/p{Z), proving (1.3). O

defined by

Theorem 1.3. Let M = H?lef" and N = [[i_, pi* be the respective prime de-
compositions of M and N and assume that M|N or equivalently, 0 < b; < a; for
1=1,...,n. Then

n

Lo (M) /T (N) = [ [To (p7") /T (9).

i=1

Proof. We define the map

@ To (M) = [ [ To (o) /T (0"),

()0 ) )

It is a surjective homomorphism with kernel I" (V). The claim follows now from the

first isomorphism theorem. O

Note that (1.3) and Theorem 1.3 for M =1 provide another proof of (1.1).

1.3 Index Formulas for Congruence Subgroups

Let N = [];_, pi® be the prime decomposition of the positive integer N. Certain

index formulae for the chain of subgroups
L(N)<T(N)<To(N) <SLy(Z)

are exhibited here. From [Miy89, p. 105] we can immediately deduce the following

index formulae.
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Proposition 1.4. The index of the principal congruence subgroup of level N in
SLy (Z) is given by
n 1

[SLy (Z) : T (N)] = N3H(1 - P), (1.4)
and
[T () : Ty (V)] = N 1= ). (15)

Proof. By (1.1) the index of I (N) in SLs (Z) is given by |SLy (Z/NZ)|. From (1.3)
we know that this quantity is given by

| [ISLe (z/p2) |.
i=1

Miyake proves by induction that |SLg (Z/p®Z)| = p’*(1 — 1/p?) for each i €

)

{1,...,n} (cf. [Miy89, p.106]). He proves (1.5) by showing that the map

b
0 : Ty (N) = (Z/NZ)*, (a d) — dmod N
1
is a surjective homomorphism with kernel I" (V) on the previous page. O

Proposition 1.5. The index of the principal congruence subgroup of level N in
['y (N) is given by

[[1 (N):T'(N)] =N. (1.6)
Proof. We define the map

¢:T1(N)—>Z/NZ,

b
(a ) — bmod N.
c d
It is a homomorphism, because

a b\ [(d V « ab + bd'
) L)
= ab + bd' mod N

=b+ 0 mod N

_ab+a’b’
_Spcd(pc’d’7

whenever a = d’ = 1mod N, which is the case in T'; (N). Surjectivity of ¢ is evident.

Once again, the First Isomorphism Theorem completes the proof. O
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Corollary 1.6. The index of the Hecke congruence subgroup of level N in SLs (Z)
s given by

[SLy (Z): To (V)] = N [+ 1), (1.7)

i=1 pi

Furthermore, for any prime p and integer k > 1

[To (1) : To (0")] = »- (1.8)

Proof. By Lagrange’s Theorem,
[SLa (Z) : T'(N)] = [SL2 (Z) : To (N)] [T'o (N) - Ty (N)] [I't (V) = T (N)] .
Using the previous three propositions this takes the form
" 1 u 1
N[ = =) = [SL2 (2) : To (MIN?] (1 = ),
i=1 p v i=1 pi
yielding (1.7). This newly deduced result gives (1.8) according to the following.

[SL2 (Z) : T (p") ] (1 5)

P ) Lo 0] = (8L, @y oy 7] ~ =) -

1.4 Subgroups containing Hecke Congruence Sub-
groups

In this section we show that for any group I' such that I'g (N) < T' < SLy (Z), for

some positive integer N, is necessarily equal to some I'q (D) with D|N.

1.4.1 Ty (p) is maximal in SL; (Z)

Let p be a prime. We show that the group generated by T'g (p) together with some
V e SLy (Z)\{V'} is already SLo(Z). This implies that there are no subgroups
properly in between Iy (p) and the full modular group.

The following proposition can be found in [Apo90, p. 75]. It says that if one
multiplies an arbitrary element V' of SLy (Z)\I'g (p) by a suitable power of T', and

then by S, one obtains an element of T'y (p).
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Proposition 1.7. Let p be prime. Then for every V in Sl (Z)\I'g (p) there exists
an element P in To (p) and an integer k, 0 < k < p, such that

V = PST".
From this we can deduce the main result if NV is a prime number as follows.

Theorem 1.8. For each V in SLy (Z)\I'g (p), the group T generated by the set
Lo (p) u{V} is equal to SLy (Z).

Proof. Let V' € SLy (Z)\I'g (p) be arbitrary. We prove that V' is contained in I
By Proposition 1.7, there exist P and P in Iy (p) and k, k" € Z such that

V = PST*
and
V' =P'ST".
Then
V' = P'SsT"

= P'P ' pSTRT AT
= P'P71pSTRTV =k,
because PP = TFT—* = [. Tt follows that
V' = P'PVTH R, (1.9)

By assumption, P, P,V € I'. T is a group, hence also P~! € I". As all of the factors
in (1.9) are in I it follows that V"’ is contained in I'. O

1.4.2 Groups between Ty (p*) and SL, (Z)

In this subsection we inductively prove that if N is a prime power, then any group
between T'g (N) and the modular group is also of Hecke type. The previous subsec-
tion provides the induction basis.

In what follows, we will need this simple description of the intersection of two Hecke

congruence subgroups.

Lemma 1.9. Let M, N be integers. Then
Lo (M) nTo(N) =To([M,N]),

where [M, N| denotes the least common multiple of M and N.
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Proof. T'g (M) n Ty (V) consists exactly of the matrices

a b
c d
with ¢ = 0mod N and ¢ = 0 mod M. This condition is equivalent to

c=0mod [M, N]. O

This proposition is fundamental for the induction step we will use to extend the

main theorem for prime numbers to prime powers.
Proposition 1.10. For k> 1, I'; (pk) s a mazximal subgroup of T'y (pk_l).

Proof. By (1.8), the index of I'y (pk) in Iy (pk_l) is prime. The claim now follows

from Lagrange’s theorem. [l

We now know that for any prime p and integer £ > 1, there are no subgroups
contained properly between Ty (p¥) and To (p*~!). We still need to show that it is
impossible for a group to contain I'y (p’“), some element of SLy (Z)\I' (pk_l), but
none of I’y (p"“_l) \Io (pk), because such a group would not be of Hecke type. To

1 0
U, = (n 1) ely(n),

which is practical due to its simplicity. Note that

do so, we use the matrix

Upw = U and Uy = U,Upy.
The next lemma allows us to make use of this matrix.

Lemma 1.11. Let I" be a subgroup of SLy (Z) such that Ty (pk) < T for somek > 1,
and T\I'g (pk_l) be nonempty. Then Uy 1s an element of T

Proof. Let

a b b1
V= <cpl d> e I\ (p"71)

such that p{ cand [ < k—1. Since p 1 d, the Extended Euclidean Algorithm (EEA)

can be used to find integers y and y' satisfying

yd +y'p"~ =1
and p {y. Multiplying by ¢ and subtracting cyd implies

c+ (—cy)d = cy'p".
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Let x = —cy be the coefficient of d. Tt follows that

VU, = ’ V= Tler, () T,
p! (pl(c—i-dx) ?> (Cy'pk ?> o(p)

whence also U, = V=Y(VU,,) € I'. Because p { ¢ and p { y, the number p does also
not divide x. Therefore, the (EEA) can be used again to find another two integers

z and 2/, for which

!/

zo+ 2P =1

holds. Now it is apparent that

Since U, € I and U,k € Iy (p’“) < I, it follows that U,r-1 € I'. n

Combining the previous results, we are now ready to inductively prove the main

result of this chapter for N = p*.

Theorem 1.12. All groups I' such that Ty (p*) < T < SLy(Z) are of the form
Lo (p™) for some n < k.

Proof. We prove this by induction on k. The statement is trivial for k = 0, since
I'o (1) = SLy (Z). Theorem 1.8 proves the statement for £k = 1. Now let £ > 1 be
arbitrary and assume that the statement holds for each n < k. Let I' be a group
such that

To (") <T <SLy(Z). (1.10)

Then by Lemma 1.9 intersecting (1.10) with Ty (p*~') yields
Ly (pk) <I'nTy (Pkil) < Ty (pkfl) .
By Proposition 1.10 it follows that either
AT, (pF1) = Ty (1)

I ATy (p*") =Ty (p"). (1.11)
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In the first case, either I' = I’y (p""_l) and the statement is proved, or I' contains
To (p*7!) and an element of SLy(Z)\I'o (p" ') and application of the induction
hypothesis to I'y (pkfl) and n = k — 1 yields the result. In the second case either
I'="T, (pk) and the statement is proved, or I' has to contain an element V' of
SLy (Z)\I'o (p*~*). Suppose there existed such a V. By Lemma 1.11 it follows that
Upe—1 is in I'. Clearly Upe—1 € I'g (pk_l), but this contradicts (1.11), so no such V

can exist. This completes the proof. O

1.4.3 Groups between 'y (N) and SL; (Z)

In this section we prove the main theorem for arbitrary positive integers N. To do
so, we work in the quotient I'g (M) /T (N). This requires multiple applications of
the Fourth Isomorphism Theorem, also known as Lattice Isomorphism Theorem for
groups. It can be found for example in [DF03, p. 99]. It states that there is a bijec-
tion between the subgroups of a group containing a common normal subgroup, and
the subgroups of the quotient by this normal subgroup, preserving many properties.
As shown above, T'g (M) /T (N) decomposes into a direct product. The next lemma

allows us to deal with subgroups between direct products of groups.

Lemma 1.13. If G = A x B is a group, and C' < G is a subgroup, then C is of
the form {(a;,b;) |i € I}, and {a; | i€ I} and {b; |i € I} are subgroups of A and B,

respectively.

Proof. Recall that A is normal in GG, and the quotient of G by A is simply B. There-
fore, the image of C' under the quotient map, which is in this case the projection to

the second component, is {b; | i € I'}. By symmetry, the statement is proved. ]
We are now ready to prove the main result of this chapter.

Theorem 1.14. Let M, N be positive integers such that M|N, and let T be a sub-
group of SLy (Z) such that Ty (N) < T < To(M). Then there exists an integer D
such that M|D|N and I' = T'y (D).

Proof. Let M =[]}, pliand N = [ 17, p{" be the respective prime decompositions
of M and N. Since M|N we have that 0 < b; < a; fori = 1,...,n. Then the fourth
isomorphism theorem applied to reduction modulo I" (V) gives
Lo (N)/T'(N) <T/I'(N)< To(M)/T(N)
—_— —_—
=[ 172y Do (p77) /0 (p7) ~[T7y To(py?) /0 (v5)
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Lemma 1.13 can obviously be extended to arbitrary finite products using induction.
Then we can use it to deduce that I'/T'(N), as a subgroup of a direct product,
has the form {(g},...,g})li € I}, where each G; := {gi|i € I} is a subgroup of
Ty (p?-j ) /T (p?j ) containing T (p?j )/T (p;j ). By the Fourth Isomorphism Theorem,

and Theorem 1.12, for all j there is an integer ¢; such that b; < ¢; < a; and

Gy =To (o) /T (07') -

Thus, for D =[], p

Cj
70

n

T/T(N) =] [T (07) /T (b)) =T (D) /I (N).

7=1

We may apply the Fourth Isomorphism Theorem again and obtain

I'=Ty(D).

1.5 Morris Newman’s Result

After completing the results of the previous sections, we found that Morris Newman
had already proved Theorem 1.14 in 1955. His proof is similar to ours in section
1.4.2 but works for arbitrary N using Dirichlet’s theorem on arithmetic progres-
sions. There is also a little mistake in the original proof found in [New55]. Namely,
induction is done on the number of distinct prime divisors of M. However, it needs
to be done on the total number P(M) of divisors of M.

Theorem 1.15 (Newman). Let T’ be a group such that To (MN) < T < Ty (N).
Then I' =Ty (DN) for some D|M.

Proof. For any N, if P(M) =1 then T'g (N) < T' < Ty (N), such that I' = Ty (N).
Suppose the theorem holds for all N and for all M such that P(M) < k, and let M
be such that P(M) = k. Let M = rm where r is a proper nontrivial divisor of M.
Then T’y (rmN) € T' € T'y (IV) and intersecting by T'g (V) gives

Fo(rmN)< T nTy(rN) < Ty (rN).

Here we have that P(m) < k, so we may apply the induction hypothesis to m. If
P(M) denoted the number of prime divisors of M as in the original proof, then
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P(m) = k would still be possible.
We obtain
'y (rN)=Tq(r'rN)

for some 7/|m. It follows
FO (T/TN) cl'c FO (N)

If there is an 7 such that 7/ # m then I' = 'y (DN for some D|r'r|M from applying

the induction hypothesis to r'r. Otherwise, for each r, ' = m. Then for every
proper divisor r of M, T'n Ty (rN) =Ty (M N). This implies that if

a b
el
(Nc d>

either Ne =0 mod MN and M|c or Nc %0 mod MN and therefore (M, c) = 1.
Suppose now that I' = T'g (M N), so that I'o (MN) < I' € I'y(N). Then I" must

contain an element
a b
Nc d

where (M, c) = 1. Since T' e I'g (M N) < I', I" also contains
7o @ by ([a+Ncx b+dx
Nc d Nc d

The next part is similar to the proof of Lemma 1.11.

for every x € Z.

Since ad — Nbe = 1 also (a, N¢) = 1, and so the arithmetic progression {a + Ncz}
contains an infinite number of primes, by Dirichlet’s theorem. Hence, there is an x
such that (a + Ncx, M) = 1. That is, I contains an element

ag by
NCO d() .

where (ag, M) = (co, M) = 1. For an integer y, consider now

U ap  bo . Qo bo
N NCQ d() N((on + C()) Nboy + do .

Since (ag, M) = 1, we can find a y such that agy + ¢o = 0 mod M. For this v,

Qo bo
U elg(MN)cT.
Ny (NCO do) 0 ( )
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Hence, Uy, € I'. Since (cp,M) = 1 and apy + ¢o = 0 mod M it is true that
(y, M) = 1. Hence, integers u,v can be found such that uy + vM = 1. Then
' contains U, Uy;y = Ux. Because the representatives of Tg (MN) in Iy (N)
are generated by T' and Uy, it follows that I'g (V) < I, and since I' < Iy (N),
I =Ty (N). O



Chapter 2

Generators of 'y (V)

All generators of I'g (N) presented here were obtained using the well-known Reide-
meister-Schreier process (cf. [New74, p.347-356]). In 1929, Rademacher computed a
presentation of I'y (V) in the case where N is prime (cf. [Rad29]). In 1973, Chuman
generalized this presentation to arbitrary integers N, as can be seen in [Chu73|.
However, in 2002 Orive noticed crucial mistakes and misprints in Chuman’s work,
causing him to recompute the generators and relations. Among other things, he
found additional relations on the generators. These were used to exhibit a minimal
generating set for I'g (IV), published in |Ori02].

2.1 Notation

For each proper divisor ¢ of N, let

be a complete system of representatives of (Z/ (t, N/t) Z)*. Here ¢ denotes Euler’s
totient function. The Chinese Remainder Theorem implies that the natural map
Z/(N/O)Z — (Z/ (t, N/t) Z)* is surjective. Hence, we may make the selection 0 <
zy; < N/t and (z¢;, N/t) = 1. Now, let

M := U td,.

t|IN
1<t<N

Furthermore, for an integer a let n(a) be the smallest positive integer such that
n(a)a* = 0 mod N.
Let a € {1,...,N — 1} be coprime to N, and fix a to be the inverse of —a, that is

18
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aa = —1 mod N. We put

) ; 1
V, = ST°T=48 — < “ ) .
—aa—1 —a

For any two pairs (a,b) and (a,b) solving the congruence
(ab—1)(ab—1) = —aa mod N (2.1)
we put

S —bba + b — a —bb—1
W,y = ST*ST'ST *ST 05 = ( aro-a ) .

aabb —ab—ab+aa+1 a— b+ abb

Note that V,, and W, are in I'g (V).

2.2 Generators

In [Ori02, p. 53] we find a minimal generating set. On page 41 he presents the

fundamental relations obtained from the Reidemeister-Schreier-process.

Theorem 2.1 (Orive). Let
H={V,|1<a<N-1,(a,N) =1}

and

H = {W.|ae Mbe{l,...,n(a) —1},(1 —ab, N) > 1}.
Then Ty (N) is generated in PSLy (Z) by G := H v H'.
We are interested in SLy (Z) rather than PSL, (Z).
Corollary 2.2. Ty (N) is generated in SLs (Z) by G u {—I}.

Proof. This is true because PSLs (Z) = SLs (Z)/{£I}, so that any element in
SLy (Z) can be written as +1P where P is a product of elements of G. O

When we refer to "the generators", we mean G U {—I}.
A part of the statement of Lemma 4 in [Ori02, p. 38| is

Lemma 2.3. Givena € M andbe {1,... ,n(a)—1} such that (1 — ab, N) > 1, there
exists a unique pair (d,lA)) with a € M,b e {1,...,n(a) — 1} and (1 — ab, N) > 1,
which satisfies (2.1).
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There are not a lot of such pairs (a, b) described above. In particular, if N is a

prime power, we find that there are none. This is never considered in [Ori02].

Proposition 2.4. If N = p"™ is a prime power, then there is no pair of numbers
(a,b) such that a€ M,be {1,...,n(a) — 1} and (1 —ab, N) > 1.

Proof. et n > 1. If a € M, then it is of the form a = p™x with 1 < m < n, a

positive integer x with (x,p”*k) = 1. This implies (z,p) = 1. By [Ori02, p. 37,

N
n(a) = —
99
with
g =(a,p") =p* (x,p" ") =p*
and
g=©".p"").
There are two cases to consider. The first one is n —m < m such that g = p"™™.
Then
pn
n(a) = = 1.
pn—mpm
In that case the set {1,...,n(a) — 1} is empty, and hence, no such b can exist.
The second case is m < n — m such that ¢ = p™. Then
(ab—1,N) = (p"zb—1,p"),
and
(p"axb—1,p") > 1< (pTab—1,p) > 1< plp™azb— 1.
This is equivalent to the existence of an integer ¢ such that
1= p(pM71xb - C)7
which can only be true if p = +1. O

Hence, if N is a prime power, then the set G in 2.1 contains no W, ;. This is

summarized as follows.

Theorem 2.5. Ty (p*) is generated in SLy (Z) by the set

{(Vo|]l<a<N-—-1,(a,N) =1} u{-1I}.



Chapter 3

The Weil Representation of [y (N)

This chapter is based on Scheithauer’s paper on the Weil Representation pp of
SLs (Z), in which he gives an explicit formula for it on the group algebra of a dis-
criminant form of even signature in terms of the genus of the discriminant form. His
paper also provides the necessary background information and convenient notation,
which we will carry over.

After a short introduction into the Weil representation of SLs (Z) and declaration
of common and convenient notation in the first section, a couple of useful facts and
formulae are stated. Then an explicit formula for the action of I'y (pk) under pp
using the group’s generators is determined. Afterwards, the Weil representation is
proved to be expressible as a tensor product representation with respect to any di-
rect orthogonal sum decomposition of the underlying discriminant form. In the final
section we apply this result to the Jordan decomposition of D. This allows us to
compute an explicit formula for the action of 'y (N) via the previously determined
formula for the action of T'y (pk) In particular, this yields another proof that I' (V)

acts trivially in the Weil representation.

3.1 Introduction

The Weil representation can be defined in a very general setting. For details, see
|[LV80]. For readability, convenient notation is introduced. In this entire chapter,
let D be a discriminant form of even signature such that the level of D divides the
positive integer N. The abbreviation e(x) = e(2miz) is commonly used.

Consider the decomposition

D= (—B D|q"™]

qeqQ

21
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mentioned in the introduction. We stick to the notation in [Sch09], which provides,
like [Strl3, p. 5], a good reference for the possible Jordan components that can
occur. If ¢ is a power of an odd prime p, the nontrivial p-adic Jordan components of
exponent ¢ are D[¢®™]. In that case we define v,(¢°"*) = e (—p — excess (¢°7"7)).
If p = 2, the nontrivial even 2-adic Jordan components of exponent ¢ = 2* are
Dl[g®e?"4], in which case we define yo(D[q?*"]) = e (oddity (D[¢%?]) /8). The pos-
sible odd nontrivial 2-adic Jordan components of exponent ¢ = 2* are denoted by
Dl|g;™], for which we define v2(D[g;"*"]) = e (oddity (D[g;""*]) /8). Whenever
Jordan components of D are mentioned, we assume that a fixed Jordan decompo-
sition has been chosen.

The Weil representation
pp : SLy (Z) — GL(C[D])

of SLy (Z) on the group algebra C[D] is defined on the generators 7', and S of
SLs (Z) by the action on a basis element ¢” € D by

Te" = pp(T)e" := e (—~*/2) €’

Se7 := pp(S)e” := ¢ (sign(D)/8) Z e(v8)é’.

V |D| BeD

Any integer ¢ acts by multiplication on D. We put
D¢ =c¢D = {cy|ve D}
to be the c-fold multiple of the elements of D, and
D.={y€eD|cy=0}
to be the kernel of that map. We further define
D% ={aeD|cy*/2+ ay=0mod 1}.

Then
D% =z, + D",

where x, = 0 except if 2% || ¢ and if the 2-adic block of type 2% is odd. In that case
Te = (2"3*1, cee 2’“*1). The map

D* — Q/Z, xc+cy > (x4 )2/2 = ¢7*/2 + xy mod 1

is well-defined.
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3.2 Useful Facts and Formulae

The next results are scattered across [Sch09]. This proposition is critical for the

evaluation of Gauss sums.

Proposition 3.1. Let o € D*. Then

St (/2 + ap) = eee (—a2/2) /DD,

weD

with

= | [r2(Dl(g/a.) e ((¢/g. — 1)oddity (D[(g/q:)*"]) /8)( /4 )

e (4/gc)"
Eqnq —C/qc
[ [ »®@la/a) 1) ((q/qc)”q) -

plate
p odd

Here q. = (q, ).

The action of an element ST*ST® under pp is determined. We will use this to
compute the action of ST*ST"S.

Proposition 3.2. Let ve€ D and a,be Z. Then

ST*ST " = e (sign(D)/4) s \/||Dﬁa|| e (—b*/2) Z e(B2/2) e’
BeDa*

The following remarks will be used commonly.
Lemma 3.3. Let ¢ be an integer. Then
Df =D cx,=00%/2=—a%,/2 (3.1)
If (¢, N) = (d,N) then
D. = Dy, D¢ = D% D* = D™ (3.2)
In particular, if (¢, N) =1 then
D¢ =D, D. = {0}, (3.3)

and

c. = e (sign(D)/8) (| D|) (¢ — 1)oddity(D)/8) (3.4)
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and if c=0mod N then
D=0, D.=D, e.=1. (3.5)

Furthermore,
1 = e(sign(D)/4) <ﬁ) e (—oddity(D)/4) , (3.6)

and
a

xp (a) = (W) e ((a — 1)oddity(D)/8)

defines a quadratic Dirichlet character modulo N.

The factors vy, are multiplicative, and the oddity formula

sign(D) + Z p — excess (D) = oddity (D) mod 8,

p=3

which is equivalent to

| [7(D) = e (sign(D)/8).

holds.

3.3 The Action of Iy (p")

In order to compute the Weil representation of SLy (Z), Scheithauer determines the

representation of 'y (IV) first.

Theorem 3.4. If the level of D divides the positive integer N, then the matrix

b
M = (a d> € Iy (N) acts in the Weil representation as

Me" = xp (M) e (—bd~*/2) e, (%)

The rest of this section is dedicated to a proof of this theorem in the case where
N = pF is a prime power. The following theorem justifies that determining the
explicit formula for the action of I'g (V) can be reduced to validating (%) for its

generators.

Theorem 3.5. If the matrices

a b , a v
M = and M =
c d d d

act in the Weil representation according to (), then so does MM'.
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Proof. We have that

MM = aa' + bc’ ab’ + bd’
cd +dd b +dd |

Then by associativity and the induction hypothesis,
(MM')e" = M(M'e") = xp (M") e (=b'd'y*/2) Me®™

— o (M) e (~Vd'2/2) xp (M) e (—bd(d7)?/2) e

— v (M) xp (M) € (=Vd/~2/2 = bd(d')?/2) ™.
Using that yp is multiplicative and simplifying —0'd’y?/2 — bd(d'y)?/2 we get

(MM")e" = xp (MM') e (—(adt'd + bdd*)~?/2) ™™
= xp (MM') e (—(ab' + bd')dd'v?/2) e
Since ¢ = 0 mod N,
(MM')e" = xp (MM') e (—(ab' + bd')(ct + dd')y*/2) el T4,
O

In the second chapter the generators of I'j (pk) were determined. All that is
left to do is to verify (%) for each one of these generators. By syntactic induction,
using Theorem 3.5 as the induction step, it follows that (%) holds for all elements

of I'y (pk) The first generator we investigate is as simple as its action under pp.
Proposition 3.6. The matriz —I acts according to (%), that is

—1Ie" = e(sign(D)/4)e .
Proof. As —I = S?%, we have that

e (sign(D)/4)
D]

_ c(sign(D)/4)

—le’ =
D]

D e(1B+ ) e

B,neD

Dl e(up)er .

B,peD

The map 3 — e (uf) is a character of D, because for any 3, 5" € D,

e(u(B+8) =e(ud)e(us).

The statement now follows from the fact that this character is trivial if and only if
pue DY, that is p = 0. O

As announced, we can compute and simplify the formula for the action of an
arbitrary element of the form ST%ST®S under pp. We will use this for the special

case where ab= —1 mod N.
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Lemma 3.7. For any a,b € 7Z we have that

ST*ST’Se" = e (3/8sign(D) . |D Z Z (V8 —bB%/2 + p2/2) e P,

| BeD peDa*

Proof. By definition,

sTesTtger — £01EnD)/8) 3 e (v8) STST .

V |D| BeD

Applying Proposition 3.2 to ST*ST"e? gives the desired formula. O]

Here, (%) is verified for the last family {V, |1 < a < N —1,(a, N) = 1} of
generators of T'g (V).

Proposition 3.8. The matriz V, = ST*ST~%S acts according to (), that is
V' =xp(—a)e (a72/2) e” ™

Proof. By Lemma 3.7,

V,e? = e (3sign(D)/8)e_, e (VB +ap?/2 + p2j2) et 7.

BeD peDa*

Since (a, N) = 1, equation (3.3) implies that D** = D and |D,| = 1. Therefore,

Vo' = e (3sign(D)/8) e_,|D|™* Z Z (v8 + aB/2 + ap?/2) e ",

BeD peD
For each € D, the map B — ap — f is an automorphism of D. Hence, we may
substitute 8’ = ap —  and get
Vae' = e (3sign(D)/8) e _,|D| '€,
with
E=> D¢ (aw — B8 +a(ap— ) )2+ au2/2) e’
B'eD peD
Since (ap — (')%/2 = a*u?/2 — auf’ + 5"%/2 and by assumption aa = —1mod N, the
expression simplifies to
ayp— B +a(ap—B)° )2+ ap?/2 = ayp — vB — ap®/2 + up' + aB”/2 + ap’/2
= af"”/2 =B + (ay + B,
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and thus,

§= D, e(ap®/2—B) ] e((ay+ B e’

p'eD neD

As above, the mapping p +— e ((ay + 8')p) is a character of D for each ' € D. It
is trivial if and only if ay + 3’ € D' = {0}. Hence, the only surviving term in the

outer sum in ¢ is the one where ' = —a~y. We see now that £ has the form
€ = IDle (a(=a7)?/2 + ar?) ™.

Since
a(—av)?/2 = aa®y*/2 = —ay*/2mod 1,

¢ takes the form
&= |Dle (cw2/2) e .

Combining these results we obtain
Ve’ = e(3/8sign(D)) e_qe (av*/2) e
- (|_—Da|) ¢ ((—a — 1)oddity(D)/8) e (a72/2) e
~ o (—a)e (a7?/2) ™,
where we used (3.5). O

This completes the proof of Theorem 3.4 for N = pF.

3.4 Tensor Products of Weil Representations

Let D = D'@® D" be a discriminant form with D’ 1 D", such that D" and D” are

also discriminant forms. We show that
Cp]=C[D]®C[D"],

and that the Weil representation respects this decomposition in the sense that the

diagram

SLs (Z) ~

po

GL(C[D'] ®C[D"])

commutes. Our first concern is the decomposition of the group algebra.
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Theorem 3.9. If the discriminant form can be written as the orthogonal direct sum
D =D"@D", then
C[D] =C[D'1®cC[D"].

Proof. If R is a commutative ring, and A and B are free R-modules with bases {a;|i €
I} and {b;|j € J}, respectively, then A®Qr B is free with basis {a;®b;|(i,7) € I x J}.
It follows that for two groups A’ and B,

R|A@® B~ R|A'|®r R|B'|
under the correspondence
r(a,b) < r(a®b).
In our case we get
C[D]=C[D'® D"l =C[D'1®C[D"].
]

We will now prove that "pp distributes over ®", by verifying the statement for
the standard generators 7" and S of SLy (Z), and then extending it to the whole

modular group by syntactic induction.

Theorem 3.10. The action of the generators S and T' of SLy (Z) respects ® in the
sense that for the unique representation ¥ @ ¢® € D' @ D" of an element of D we
have that

pD(Zﬂ)GIy ) 65 = Pp! (7_1)6’y X Ppr (T)eé,
and

pp(S)e’ @€’ = pp/(S)e” ® ppr(S)e’.
Proof. By definition of the action of T,
pp(T)e @€’ =e(—(y+0)*/2) e’ @€’
Since (v,0) =0,
pp(T)e’ @€’ =e(—7*/2—6°/2) e ® €.
A simple calculation yields

pp(T)e’ @€’ =e(—7*/2) e (—6%/2) €’ ® ¢
=e(—*/2) e ®e(—6%/2) €
— pp(T)e" ® o (T)e".
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The proof of the second part is similar. pp(S) acts as

e”@e —SZ By +9)) e”@e

BeD

=&, > el(B+BMe((B + 8o @

g'eD’ B'eD"
=¢ Z Z (B"8) e’ @€
g'eD’ B'eD"
=) e(B) D) () ®e
geD! BreD”
with
- e(sign(D)/8) e (sign (D) /8 4 sign (D") /8)
oVIPE VDD |
Hence, pp(S) acts on e” ® €’ as
e (sign (D’) /8)

/ ! € (Sign (D”) /8) " 0
— > e(B) e’ ® — > (B0
|DI| ﬁ/eDle( ,y) ¢ |D”| B//eDlle( )6

=pp/(S)e” @ ppr(S)e’.

O
The induction step is simple, and the desired result is the following.
Corollary 3.11. For any matriz M € SLy (Z),
pp(M)e’ @€’ = pp/(M)e” ® ppr(M)e’. (3.7)

Proof. We show that if M, M' € SLy (Z) satisfy (3.7), then also M M’ satisfies (3.7).
Using the induction hypothesis and that pp is a representation,

oo (MM @€ = po(M) (pr (M)e” @ pi(M')e?)
= pp(M)pp(M")e” @ ppr (M) ppr(M")e’
= pD/(]\4J\4/)€,y ® pD//(MMI)€5
Since we proved (3.7) for the generators T and S of SLy (Z), it follows that (3.7)
holds for all M € S, (Z). O

3.5 Junction: Action of I'((N) and I' (N)

Let Q © Z be an index set for the Jordan decomposition of D, i.e.

D = @ Dlgm™].

q€Q
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Whenever ®q or @q occurs, ¢ runs through ). Because the Jordan components
are pairwise orthogonal, we can extend the results from the previous section to this

decomposition of D, that is

C[D] = @ C[Dlg™]].

q€Q

and pp = ®,pp[geana] such that the diagram

SLs (Z) ~

®qm

GL(®, C[D[qll)

commutes. We can now prove the main result of this chapter.

Theorem 3.12. Let D be a discriminant form such that the level of D divides

b
the positive integer N. Then the matriz M = <& g € I'o(N) acts in the Weil
c
representation as
Me" = xp (M)e (—bdy*/2) e™. (%)

Proof. The element 1le” of C|[D] can be uniquely represented as
e"/ — ® e'Yq,
qeQ
with €% € D|¢?"]. From Corollary 3.11 it follows that
po(M)e" = po(M) @ ¢ = ) pogesra (M),
q€Q q€Q

Now let g € Q. Then the matrix M is in 'y (¢) € g (N). Furthermore, for p € Q
with ¢ # p, it is true that the levels of the corresponding Jordan blocks D[g%e"]
and D[p®™»] are coprime. In this situation, the level of D[¢%"¢] divides the prime

power ¢. In section 3.3 we proved that (%) holds if NV is a prime power. Thus,

pp(M)e” = (X) Xpigeana] (M) e (—bdy}/2) ™

q€Q
= [ [ ot (M) e (<bdv;/2) &) e
qeQ q'eQ

= | [ xppgzomay (M) e (=bdr; /2) €
a€Q
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where we first applied Corollary 3.11 and secondly (%) for prime powers, proved in

section 3.3. Now since

(|D[qzwa|> <|D[piwp]|) - (|D[qawq]<i>D[pw]|> ’

sign (D[¢7"]) + sign (D[p"™*]) = sign (D[¢""] @ D[p~"™]),

and

it is easy to see that

Xpgama] (M) Xpperre) (M) = X plgaraj@npperme] (M) -

D[g¢ea™] and D[p®™»] are orthogonal. Thus,

V)24 752 = (g + w)?/2.

These facts imply that
H XD[g=ama] (M) € (—bdvg/Q) =xp(M)e (—bd72/2) ,
qeQ

and therefore
po(M)e” = xp (M) e (~bdy?/2) €.

[]

Note that as a special case we obtain that the action of I (V) is trivial. This

was first found out by Schoeneberg.
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