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Introduction

A fundamental object in algebra is the group, being fundamentally related to the

notion of symmetry. The groups of our concern are the Hecke congruence subgroups

Γ0 pNq of the modular group SL2 pZq; that is the groups of 2�2 - matrices congruent

to an upper triangular matrix modulo N . They occur in the study of modular forms.

Γ0 pNq contains the principal congruence subgroup Γ pNq of matrices congruent to

the identity matrix modulo N .

In the �rst chapter we show that for integers M,N with M |N and respective prime

decompositions M �
±n

i�1 p
bi
i and N �

±n
i�1 p

ai
i , the identity

Γ0 pMq {Γ pNq �
n¹
i�1

Γ0

�
pbii
�
{Γ ppaii q

holds. We further present various index formulas for quotients of congruence sub-

groups by Γ pNq.

The main result of the �rst chapter is a new proof of this result.

Theorem. Any subgroup of the modular group containing a Hecke congruence sub-

group Γ0 pNq is already of Hecke type.

This was �rst proved in [New55], however with a small mistake. At the end of

this chapter a corrected version of that proof is presented.

In the second chapter a minimal set of generators of Γ0 pNq is listed, together with

an investigation of the special case where N is a prime power. We prove that the

generating set in the prime power case is similar to the generating set of Γ0 pNq

when N is prime.

Let D be a discriminant form such that the level of D divides the positive integer

N . D decomposes uniquely into a direct sum of p-groups. This can be re�ned into

q-groups Drqs � tγ P D | qγ � 0u with q � pk for a prime p dividing N . We

introduce parameters nq ¥ 1, the rank of Drqs and εq P t�1u depending on the

quadratic form of D restricted to Drqs. We write this orthogonal decomposition as

D �
à
qPQ

Drqεqnq s

3
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assuming a suitable index set Q � Z. We prove that

C rDs �
â
qPQ

C rDrqεqnq ss .

The Weil representation of SL2 pZq,

ρD : SL2 pZq Ñ GLpC rDsq,

is de�ned via its action on the standard generators of SL2 pZq. We prove that it

respects the tensor product decomposition of C rDs in the sense that the diagram

GLpC rDsq

SL2 pZq

GLp
Â

q C rDrqεnsq

�

ρD

Â
q ρDrqεnss

commutes. The main result of the last chapter is a proof of this theorem.

Theorem. If the level of D divides the positive integer N , then the matrix M ��
a b

c d

�
P Γ0 pNq acts in the Weil representation as

Meγ � χD pMq e
�
�bdγ2{2

�
edγ. (�)

This is done by verifying (�) for the generators of Γ0 pNq presented in the second

chapter, and using the commutativity of the above diagram. This result was known

before, but proved di�erently.
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Chapter 1

Structure Results for Congruence

Subgroups

In the �rst section of this chapter a few introductory remarks and de�nitions are

given. The second section contains a decomposition of Γ0 pMq {Γ pNq into a direct

product. Afterwards a few index formulas for certain congruence subgroups are

exhibited. The most important section is the fourth one, containing the proof that

any group Γ such that Γ0 pNq ¤ Γ ¤ SL2 pZq is already equal to Γ0 pDq for some

D|N . In the last section a corrected version of Newman's di�erent proof of the same

result is presented.

1.1 Basic De�nitions and Remarks

Let N be a positive integer. For the rings R � Z and R � Z{NZ we de�ne SL2 pRq

to be the group of all 2�2 matrices with entries in R and determinant one. SL2 pZq
is also called the (full) modular group. It plays a fundamental role in the theory of

modular forms. The group

Γ pNq :� t

�
a b

c d

�
P SL2 pZq |

�
a b

c d

�
�

�
1 0

0 1

�
modNu

of matrices in SL2 pZq that are entry-wise congruent to the identity matrix modulo

N is called principal congruence subgroup of level N . Any subgroup of SL2 pZq that
contains some Γ pNq is called a congruence subgroup. For instance, the group

Γ1 pNq :� t

�
a b

c d

�
P SL2 pZq |

�
a b

c d

�
�

�
1 �

0 1

�
modNu

6
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of matrices in SL2 pZq equivalent to a unitriangular matrix moduloN is a congruence

subgroup. Important in this thesis is the group

Γ0 pNq :� t

�
a b

c d

�
P SL2 pZq | c � 0 modNu

of matrices in SL2 pZq equivalent to a triangluar matrix modulo N . Note that

Γ0 p1q � SL2 pZq. Γ0 pNq is called congruence subgroup of Hecke type or Hecke

congruence subgroup. In literature Γ1 pNq is sometimes also said to be of Hecke

type.

One easily checks that Γ0 pNq is a congruence subgroup, that Γ pNq is normal in

SL2 pZq, and that

SL2 pZq {Γ pNq � SL2 pZ{NZq , (1.1)

since Γ pNq is the kernel of reduction modulo N in each component. A proof can

be found in [Miy89, p. 104].

The following theorem is well-known. It can for instance be found in [Miy89, p. 96],

and it will be referred to in the third chapter.

Theorem 1.1. The modular group SL2 pZq is generated by the matrices

T �

�
1 1

0 1

�
and S �

�
0 �1

1 0

�
.

1.2 Factorization of Γ0 pMq {Γ pNq

As Γ pNq is normal in SL2 pZq, and Γ pNq ¤ Γ0 pNq ¤ Γ0 pMq wheneverM |N , Γ pNq

is also normal in Γ0 pMq. In this section we use the Chinese Remainder Theorem

(CRT) to decompose the quotient Γ0 pMq {Γ pNq into a direct product of factors of

the form Γ0

�
pbi
�
{Γ ppai q.

Theorem 1.2. Let N �
±n

i�1 p
ai
i be the prime decomposition of N . Then

Mat2pZ{NZq �
n¹
i�1

Mat2pZ{paii Zq (1.2)

and

SL2 pZ{NZq �
n¹
i�1

SL2 pZ{paii Zq . (1.3)

Proof. By the (CRT), the mapping

ψ : Z{NZÑ
n¹
i�1

Z{paii Z,

x ÞÑ pxmod pai1 , . . . , xmod pann q
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is a group isomorphism. Then also

ϕ : Mat2pZ{NZq Ñ
n¹
i�1

Mat2pZ{paii Zq,

de�ned by �
a b

c d

�
ÞÑ

��
a b

c d

�
mod pai1 , . . . ,

�
a b

c d

�
mod pann

�
,

yields an isomorphism, the one needed for (1.2). The restriction of ϕ to SL2 pZ{NZq
is an isomorphism between SL2 pZ{NZq and

±n
i�1 SL2 pZ{paii Zq, proving (1.3).

Theorem 1.3. Let M �
±n

i�1 p
bi
i and N �

±n
i�1 p

ai
i be the respective prime de-

compositions of M and N and assume that M |N or equivalently, 0 ¤ bi ¤ ai for

i � 1, . . . , n. Then

Γ0 pMq {Γ pNq �
n¹
i�1

Γ0

�
pbii
�
{Γ ppaii q .

Proof. We de�ne the map

ϕ : Γ0 pMq Ñ
n¹
i�1

Γ0

�
pbii
�
{Γ ppaii q ,�

a b

c d

�
ÞÑ

n¹
i�1

��
a b

c d

�
Γ ppaii q

�
�

n¹
i�1

��
a b

c d

�
mod paii

�
.

It is a surjective homomorphism with kernel Γ pNq. The claim follows now from the

�rst isomorphism theorem.

Note that (1.3) and Theorem 1.3 for M � 1 provide another proof of (1.1).

1.3 Index Formulas for Congruence Subgroups

Let N �
±n

i�1 p
ai
i be the prime decomposition of the positive integer N . Certain

index formulae for the chain of subgroups

Γ pNq ¤ Γ1 pNq ¤ Γ0 pNq ¤ SL2 pZq

are exhibited here. From [Miy89, p. 105] we can immediately deduce the following

index formulae.
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Proposition 1.4. The index of the principal congruence subgroup of level N in

SL2 pZq is given by

rSL2 pZq : Γ pNqs � N3
n¹
i�1

p1�
1

p2
i

q, (1.4)

and

rΓ0 pNq : Γ1 pNqs � N
n¹
i�1

p1�
1

pi
q. (1.5)

Proof. By (1.1) the index of Γ pNq in SL2 pZq is given by |SL2 pZ{NZq |. From (1.3)

we know that this quantity is given by
n¹
i�1

|SL2 pZ{paii Zq |.

Miyake proves by induction that |SL2 pZ{paii Zq | � p3ai
i p1 � 1{p2

i q for each i P

t1, . . . , nu (cf. [Miy89, p.106]). He proves (1.5) by showing that the map

ϕ : Γ0 pNq Ñ pZ{NZq�,

�
a b

c d

�
ÞÑ dmodN

is a surjective homomorphism with kernel Γ pNq on the previous page.

Proposition 1.5. The index of the principal congruence subgroup of level N in

Γ1 pNq is given by

rΓ1 pNq : Γ pNqs � N. (1.6)

Proof. We de�ne the map

ϕ : Γ1 pNq Ñ Z{NZ,�
a b

c d

�
ÞÑ bmodN.

It is a homomorphism, because

ϕ

�
a b

c d

��
a1 b1

c1 d1

�
� ϕ

�
� ab1 � bd1

� �

�

� ab1 � bd1 modN

� b� b1 modN

� ϕ

�
a b

c d

�
� ϕ

�
a1 b1

c1 d1

�
,

whenever a � d1 � 1modN , which is the case in Γ1 pNq. Surjectivity of ϕ is evident.

Once again, the First Isomorphism Theorem completes the proof.
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Corollary 1.6. The index of the Hecke congruence subgroup of level N in SL2 pZq
is given by

rSL2 pZq : Γ0 pNqs � N
n¹
i�1

p1�
1

pi
q. (1.7)

Furthermore, for any prime p and integer k ¥ 1,

�
Γ0

�
pk�1

�
: Γ0

�
pk
��
� p. (1.8)

Proof. By Lagrange's Theorem,

rSL2 pZq : Γ pNqs � rSL2 pZq : Γ0 pNqs rΓ0 pNq : Γ1 pNqs rΓ1 pNq : Γ pNqs .

Using the previous three propositions this takes the form

N3
n¹
i�1

p1�
1

p2
i

q � rSL2 pZq : Γ0 pNqsN
2

n¹
i�1

p1�
1

pi
q,

yielding (1.7). This newly deduced result gives (1.8) according to the following.

�
Γ0

�
pk�1

�
: Γ0

�
pk
��
�

�
SL2 pZq : Γ0

�
pk
��

rSL2 pZq : Γ0 ppk�1qs
�

pkp1� 1
p
q

pk�1p1� 1
p
q
� p

1.4 Subgroups containing Hecke Congruence Sub-

groups

In this section we show that for any group Γ such that Γ0 pNq ¤ Γ ¤ SL2 pZq, for
some positive integer N , is necessarily equal to some Γ0 pDq with D|N .

1.4.1 Γ0 ppq is maximal in SL2 pZq

Let p be a prime. We show that the group generated by Γ0 ppq together with some

V P SL2 pZq ztV u is already SL2 pZq. This implies that there are no subgroups

properly in between Γ0 ppq and the full modular group.

The following proposition can be found in [Apo90, p. 75]. It says that if one

multiplies an arbitrary element V of SL2 pZq zΓ0 ppq by a suitable power of T , and

then by S, one obtains an element of Γ0 ppq.
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Proposition 1.7. Let p be prime. Then for every V in SL2 pZq zΓ0 ppq there exists

an element P in Γ0 ppq and an integer k, 0 ¤ k   p, such that

V � PST k.

From this we can deduce the main result if N is a prime number as follows.

Theorem 1.8. For each V in SL2 pZq zΓ0 ppq, the group Γ generated by the set

Γ0 ppq Y tV u is equal to SL2 pZq.

Proof. Let V 1 P SL2 pZq zΓ0 ppq be arbitrary. We prove that V 1 is contained in Γ.

By Proposition 1.7, there exist P and P 1 in Γ0 ppq and k, k1 P Z such that

V � PST k

and

V 1 � P 1ST k
1

.

Then

V 1 � P 1ST k
1

� P 1P�1PST kT�kT k
1

� P 1P�1PST kT k
1�k,

because P�1P � T kT�k � I. It follows that

V 1 � P 1P�1V T k
1�k. (1.9)

By assumption, P 1, P, V P Γ. Γ is a group, hence also P�1 P Γ. As all of the factors

in (1.9) are in Γ it follows that V 1 is contained in Γ.

1.4.2 Groups between Γ0

�
pk
�
and SL2 pZq

In this subsection we inductively prove that if N is a prime power, then any group

between Γ0 pNq and the modular group is also of Hecke type. The previous subsec-

tion provides the induction basis.

In what follows, we will need this simple description of the intersection of two Hecke

congruence subgroups.

Lemma 1.9. Let M,N be integers. Then

Γ0 pMq X Γ0 pNq � Γ0 prM,N sq ,

where rM,N s denotes the least common multiple of M and N .
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Proof. Γ0 pMq X Γ0 pNq consists exactly of the matrices�
a b

c d

�

with c � 0 modN and c � 0 modM . This condition is equivalent to

c � 0 mod rM,N s.

This proposition is fundamental for the induction step we will use to extend the

main theorem for prime numbers to prime powers.

Proposition 1.10. For k ¥ 1, Γ0

�
pk
�
is a maximal subgroup of Γ0

�
pk�1

�
.

Proof. By (1.8), the index of Γ0

�
pk
�
in Γ0

�
pk�1

�
is prime. The claim now follows

from Lagrange's theorem.

We now know that for any prime p and integer k ¥ 1, there are no subgroups

contained properly between Γ0

�
pk
�
and Γ0

�
pk�1

�
. We still need to show that it is

impossible for a group to contain Γ0

�
pk
�
, some element of SL2 pZq zΓ0

�
pk�1

�
, but

none of Γ0

�
pk�1

�
zΓ0

�
pk
�
, because such a group would not be of Hecke type. To

do so, we use the matrix

Un �

�
1 0

n 1

�
P Γ0 pnq ,

which is practical due to its simplicity. Note that

Unn1 � Un1

n and Un�n1 � UnUn1 .

The next lemma allows us to make use of this matrix.

Lemma 1.11. Let Γ be a subgroup of SL2 pZq such that Γ0

�
pk
�
¤ Γ for some k ¡ 1,

and ΓzΓ0

�
pk�1

�
be nonempty. Then Upk�1 is an element of Γ.

Proof. Let

V �

�
a b

cpl d

�
P ΓzΓ0

�
pk�1

�
such that p - c and l   k�1. Since p - d, the Extended Euclidean Algorithm (EEA)

can be used to �nd integers y and y1 satisfying

yd� y1pk�l � 1

and p - y. Multiplying by c and subtracting cyd implies

c� p�cyqd � cy1pk�l.
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Let x � �cy be the coe�cient of d. It follows that

V Uxpl �

�
� �

plpc� dxq �

�
�

�
� �

cy1pk �

�
P Γ0

�
pk
�
� Γ,

whence also Uxpl � V �1pV Uxplq P Γ. Because p - c and p - y, the number p does also
not divide x. Therefore, the (EEA) can be used again to �nd another two integers

z and z1, for which

zx� z1pk�l � 1

holds. Now it is apparent that

Upk�1 �
�
Upl
�pk�1�l

�
�
Uplpzx�z1pk�lq

�pk�1�l

�
�
Uplzx�z1pk

�pk�1�l

�
�
UplzxUz1pk

�pk�1�l

�
��
Uxpl

�z �
Upk
�z1	pk�1�l

.

Since Uxpl P Γ and Upk P Γ0

�
pk
�
� Γ, it follows that Upk�1 P Γ.

Combining the previous results, we are now ready to inductively prove the main

result of this chapter for N � pk.

Theorem 1.12. All groups Γ such that Γ0

�
pk
�
¤ Γ ¤ SL2 pZq are of the form

Γ0 pp
nq for some n ¤ k.

Proof. We prove this by induction on k. The statement is trivial for k � 0, since

Γ0 p1q � SL2 pZq. Theorem 1.8 proves the statement for k � 1. Now let k ¡ 1 be

arbitrary and assume that the statement holds for each n   k. Let Γ be a group

such that

Γ0

�
pk
�
¤ Γ ¤ SL2 pZq . (1.10)

Then by Lemma 1.9 intersecting (1.10) with Γ0

�
pk�1

�
yields

Γ0

�
pk
�
¤ ΓX Γ0

�
pk�1

�
¤ Γ0

�
pk�1

�
.

By Proposition 1.10 it follows that either

ΓX Γ0

�
pk�1

�
� Γ0

�
pk�1

�
or

ΓX Γ0

�
pk�1

�
� Γ0

�
pk
�
. (1.11)
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In the �rst case, either Γ � Γ0

�
pk�1

�
and the statement is proved, or Γ contains

Γ0

�
pk�1

�
and an element of SL2 pZq zΓ0

�
pk�1

�
and application of the induction

hypothesis to Γ0

�
pk�1

�
and n � k � 1 yields the result. In the second case either

Γ � Γ0

�
pk
�
and the statement is proved, or Γ has to contain an element V of

SL2 pZq zΓ0

�
pk�1

�
. Suppose there existed such a V . By Lemma 1.11 it follows that

Upk�1 is in Γ. Clearly Upk�1 P Γ0

�
pk�1

�
, but this contradicts (1.11), so no such V

can exist. This completes the proof.

1.4.3 Groups between Γ0 pNq and SL2 pZq

In this section we prove the main theorem for arbitrary positive integers N . To do

so, we work in the quotient Γ0 pMq {Γ pNq. This requires multiple applications of

the Fourth Isomorphism Theorem, also known as Lattice Isomorphism Theorem for

groups. It can be found for example in [DF03, p. 99]. It states that there is a bijec-

tion between the subgroups of a group containing a common normal subgroup, and

the subgroups of the quotient by this normal subgroup, preserving many properties.

As shown above, Γ0 pMq {Γ pNq decomposes into a direct product. The next lemma

allows us to deal with subgroups between direct products of groups.

Lemma 1.13. If G � A � B is a group, and C ¤ G is a subgroup, then C is of

the form tpai, biq | i P Iu, and tai | i P Iu and tbi | i P Iu are subgroups of A and B,

respectively.

Proof. Recall that A is normal in G, and the quotient of G by A is simply B. There-

fore, the image of C under the quotient map, which is in this case the projection to

the second component, is tbi | i P Iu. By symmetry, the statement is proved.

We are now ready to prove the main result of this chapter.

Theorem 1.14. Let M,N be positive integers such that M |N , and let Γ be a sub-

group of SL2 pZq such that Γ0 pNq ¤ Γ ¤ Γ0 pMq. Then there exists an integer D

such that M |D|N and Γ � Γ0 pDq.

Proof. LetM �
±n

i�1 p
bi
i and N �

±n
i�1 p

ai
i be the respective prime decompositions

of M and N . Since M |N we have that 0 ¤ bi ¤ ai for i � 1, . . . , n. Then the fourth

isomorphism theorem applied to reduction modulo Γ pNq gives

Γ0 pNq {Γ pNqlooooooomooooooon
�
±n

i�1 Γ0ppaii q{Γpp
ai
i q

¤ Γ{Γ pNq ¤ Γ0 pMq {Γ pNqlooooooomooooooon
�
±n

i�1 Γ0

�
p
bi
i

	
{Γppaii q

.
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Lemma 1.13 can obviously be extended to arbitrary �nite products using induction.

Then we can use it to deduce that Γ{Γ pNq, as a subgroup of a direct product,

has the form tpgi1, ..., g
i
nq|i P Iu, where each Gj :� tgij|i P Iu is a subgroup of

Γ0

�
p
bj
j

	
{Γ
�
p
aj
j

�
containing Γ0

�
p
aj
j

�
{Γ
�
p
aj
j

�
. By the Fourth Isomorphism Theorem,

and Theorem 1.12, for all j there is an integer cj such that bj ¤ cj ¤ aj and

Gj � Γ0

�
p
cj
j

�
{Γ
�
p
aj
j

�
.

Thus, for D �
±n

i�1 p
ci
i ,

Γ{Γ pNq �
n¹
j�1

Γ0

�
p
cj
j

�
{Γ
�
p
aj
j

�
� Γ0 pDq {Γ pNq .

We may apply the Fourth Isomorphism Theorem again and obtain

Γ � Γ0 pDq .

1.5 Morris Newman's Result

After completing the results of the previous sections, we found that Morris Newman

had already proved Theorem 1.14 in 1955. His proof is similar to ours in section

1.4.2 but works for arbitrary N using Dirichlet's theorem on arithmetic progres-

sions. There is also a little mistake in the original proof found in [New55]. Namely,

induction is done on the number of distinct prime divisors of M . However, it needs

to be done on the total number P pMq of divisors of M .

Theorem 1.15 (Newman). Let Γ be a group such that Γ0 pMNq ¤ Γ ¤ Γ0 pNq.

Then Γ � Γ0 pDNq for some D|M .

Proof. For any N , if P pMq � 1 then Γ0 pNq ¤ Γ ¤ Γ0 pNq, such that Γ � Γ0 pNq.

Suppose the theorem holds for all N and for all M such that P pMq   k, and let M

be such that P pMq � k. Let M � rm where r is a proper nontrivial divisor of M .

Then Γ0 prmNq � Γ � Γ0 pNq and intersecting by Γ0 prNq gives

Γ0 prmNq � ΓX Γ0 prNq � Γ0 prNq .

Here we have that P pmq   k, so we may apply the induction hypothesis to m. If

P pMq denoted the number of prime divisors of M as in the original proof, then
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P pmq � k would still be possible.

We obtain

ΓX Γ0 prNq � Γ0 pr
1rNq

for some r1|m. It follows

Γ0 pr
1rNq � Γ � Γ0 pNq .

If there is an r such that r1 � m then Γ � Γ0 pDNq for some D|r1r|M from applying

the induction hypothesis to r1r. Otherwise, for each r, r1 � m. Then for every

proper divisor r of M , ΓX Γ0 prNq � Γ0 pMNq. This implies that if�
a b

Nc d

�
P Γ

either Nc � 0 mod MN and M |c or Nc � 0 mod MN and therefore pM, cq � 1.

Suppose now that Γ � Γ0 pMNq, so that Γ0 pMNq � Γ � Γ0 pNq. Then Γ must

contain an element �
a b

Nc d

�

where pM, cq � 1. Since T P Γ0 pMNq � Γ, Γ also contains

T x

�
a b

Nc d

�
�

�
a�Ncx b� dx

Nc d

�

for every x P Z.
The next part is similar to the proof of Lemma 1.11.

Since ad �Nbc � 1 also pa,Ncq � 1, and so the arithmetic progression ta �Ncxu

contains an in�nite number of primes, by Dirichlet's theorem. Hence, there is an x

such that pa�Ncx,Mq � 1. That is, Γ contains an element�
a0 b0

Nc0 d0

�
.

where pa0,Mq � pc0,Mq � 1. For an integer y, consider now

UNy

�
a0 b0

Nc0 d0

�
�

�
a0 b0

Npa0y � c0q Nb0y � d0

�
.

Since pa0,Mq � 1, we can �nd a y such that a0y � c0 � 0 modM . For this y,

UNy

�
a0 b0

Nc0 d0

�
P Γ0 pMNq � Γ.
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Hence, UNy P Γ. Since pc0,Mq � 1 and a0y � c0 � 0 mod M it is true that

py,Mq � 1. Hence, integers u, v can be found such that uy � vM � 1. Then

Γ contains Uu
NyU

v
MN � UN . Because the representatives of Γ0 pMNq in Γ0 pNq

are generated by T and UN , it follows that Γ0 pNq � Γ, and since Γ � Γ0 pNq,

Γ � Γ0 pNq.



Chapter 2

Generators of Γ0 pNq

All generators of Γ0 pNq presented here were obtained using the well-known Reide-

meister-Schreier process (cf. [New74, p.347-356]). In 1929, Rademacher computed a

presentation of Γ0 pNq in the case where N is prime (cf. [Rad29]). In 1973, Chuman

generalized this presentation to arbitrary integers N , as can be seen in [Chu73].

However, in 2002 Orive noticed crucial mistakes and misprints in Chuman's work,

causing him to recompute the generators and relations. Among other things, he

found additional relations on the generators. These were used to exhibit a minimal

generating set for Γ0 pNq, published in [Ori02].

2.1 Notation

For each proper divisor t of N , let

Φt � txt,i | 1 ¤ i ¤ ϕ pt, N{tqu

be a complete system of representatives of pZ{ pt, N{tqZq�. Here ϕ denotes Euler's

totient function. The Chinese Remainder Theorem implies that the natural map

Z{pN{tqZ Ñ pZ{ pt, N{tqZq� is surjective. Hence, we may make the selection 0  

xt,i   N{t and pxt,j, N{tq � 1. Now, let

M :�
¤
t|N

1 t N

tΦt.

Furthermore, for an integer a let npaq be the smallest positive integer such that

npaqa2 � 0 modN .

Let a P t1, . . . , N � 1u be coprime to N , and �x â to be the inverse of �a, that is

18
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aâ � �1 modN . We put

Va � ST aT�âS �

�
â 1

�aâ� 1 �a

�
.

For any two pairs pa, bq and pâ, b̂q solving the congruence

pab� 1qpâb̂� 1q � �aâmodN (2.1)

we put

Wa,b � ST aST bST�b̂ST�âS �

�
�bb̂â� b� â �bb̂� 1

aâbb̂� âb̂� ab� aâ� 1 a� b̂� abb̂

�
.

Note that Va and Wa,b are in Γ0 pNq.

2.2 Generators

In [Ori02, p. 53] we �nd a minimal generating set. On page 41 he presents the

fundamental relations obtained from the Reidemeister-Schreier-process.

Theorem 2.1 (Orive). Let

H � tVa | 1 ¤ a ¤ N � 1, pa,Nq � 1u

and

H 1 � tWa,b | a PM, b P t1, . . . , npaq � 1u, p1� ab,Nq ¡ 1u.

Then Γ0 pNq is generated in PSL2 pZq by G :� H YH 1.

We are interested in SL2 pZq rather than PSL2 pZq.

Corollary 2.2. Γ0 pNq is generated in SL2 pZq by GY t�Iu.

Proof. This is true because PSL2 pZq � SL2 pZq {t�Iu, so that any element in

SL2 pZq can be written as �IP where P is a product of elements of G.

When we refer to "the generators", we mean GY t�Iu.

A part of the statement of Lemma 4 in [Ori02, p. 38] is

Lemma 2.3. Given a PM and b P t1, . . . , npaq�1u such that p1� ab,Nq ¡ 1, there

exists a unique pair pâ, b̂q with â P M, b̂ P t1, . . . , npâq � 1u and
�

1� âb̂, N
	
¡ 1,

which satis�es (2.1).
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There are not a lot of such pairs pa, bq described above. In particular, if N is a

prime power, we �nd that there are none. This is never considered in [Ori02].

Proposition 2.4. If N � pn is a prime power, then there is no pair of numbers

pa, bq such that a PM, b P t1, . . . , npaq � 1u and p1� ab,Nq ¡ 1.

Proof. Let n ¡ 1. If a P M , then it is of the form a � pmx with 1 ¤ m   n, a

positive integer x with
�
x, pn�k

�
� 1. This implies px, pq � 1. By [Ori02, p. 37],

npaq �
N

gg1

with

g1 � pa, pnq � pk
�
x, pn�k

�
� pk

and

g �
�
pn, pn�m

�
.

There are two cases to consider. The �rst one is n �m ¤ m such that g � pn�m.

Then

npaq �
pn

pn�mpm
� 1.

In that case the set t1, . . . , npaq � 1u is empty, and hence, no such b can exist.

The second case is m ¤ n�m such that g � pm. Then

pab� 1, Nq � ppmxb� 1, pnq ,

and

ppmxb� 1, pnq ¡ 1 ô ppmxb� 1, pq ¡ 1 ô p|pmxb� 1.

This is equivalent to the existence of an integer c such that

1 � pppm�1xb� cq,

which can only be true if p � �1.

Hence, if N is a prime power, then the set G in 2.1 contains no Wa,b. This is

summarized as follows.

Theorem 2.5. Γ0

�
pk
�
is generated in SL2 pZq by the set

tVa | 1 ¤ a ¤ N � 1, pa,Nq � 1u Y t�Iu.



Chapter 3

The Weil Representation of Γ0 pNq

This chapter is based on Scheithauer's paper on the Weil Representation ρD of

SL2 pZq, in which he gives an explicit formula for it on the group algebra of a dis-

criminant form of even signature in terms of the genus of the discriminant form. His

paper also provides the necessary background information and convenient notation,

which we will carry over.

After a short introduction into the Weil representation of SL2 pZq and declaration

of common and convenient notation in the �rst section, a couple of useful facts and

formulae are stated. Then an explicit formula for the action of Γ0

�
pk
�
under ρD

using the group's generators is determined. Afterwards, the Weil representation is

proved to be expressible as a tensor product representation with respect to any di-

rect orthogonal sum decomposition of the underlying discriminant form. In the �nal

section we apply this result to the Jordan decomposition of D. This allows us to

compute an explicit formula for the action of Γ0 pNq via the previously determined

formula for the action of Γ0

�
pk
�
. In particular, this yields another proof that Γ pNq

acts trivially in the Weil representation.

3.1 Introduction

The Weil representation can be de�ned in a very general setting. For details, see

[LV80]. For readability, convenient notation is introduced. In this entire chapter,

let D be a discriminant form of even signature such that the level of D divides the

positive integer N . The abbreviation epxq � ep2πixq is commonly used.

Consider the decomposition

D �
à
qPQ

Drqεqnq s

21
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mentioned in the introduction. We stick to the notation in [Sch09], which provides,

like [Str13, p. 5], a good reference for the possible Jordan components that can

occur. If q is a power of an odd prime p, the nontrivial p-adic Jordan components of

exponent q are Drqεqnq s. In that case we de�ne γppqεqnqq � e p�p� excess pqεqnqqq.

If p � 2, the nontrivial even 2-adic Jordan components of exponent q � 2k are

Drqεq2nq s, in which case we de�ne γ2pDrq
εq2nq sq � e poddity pDrqεq2sq {8q. The pos-

sible odd nontrivial 2-adic Jordan components of exponent q � 2k are denoted by

Drq
εqnq

t s, for which we de�ne γ2pDrq
εqnq

t sq � e
�
oddity

�
Drq

εqnq

t s
�
{8
�
. Whenever

Jordan components of D are mentioned, we assume that a �xed Jordan decompo-

sition has been chosen.

The Weil representation

ρD : SL2 pZq Ñ GLpC rDsq

of SL2 pZq on the group algebra C rDs is de�ned on the generators T , and S of

SL2 pZq by the action on a basis element eγ P D by

Teγ :� ρDpT qe
γ :� e

�
�γ2{2

�
eγ

Seγ :� ρDpSqe
γ :�

e psignpDq{8qa
|D|

¸
βPD

e pγβq eβ.

Any integer c acts by multiplication on D. We put

Dc � cD � tcγ | γ P Du

to be the c-fold multiple of the elements of D, and

Dc � tγ P D | cγ � 0u

to be the kernel of that map. We further de�ne

Dc� � tα P D | cγ2{2� αγ � 0 mod 1u.

Then

Dc� � xc �Dc,

where xc � 0 except if 2k || c and if the 2-adic block of type 2k is odd. In that case

xc �
�
2k�1, . . . , 2k�1

�
. The map

Dc� Ñ Q{Z, xc � cγ ÞÑ pxc � cγq2c{2 :� cγ2{2� xcγ mod 1

is well-de�ned.
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3.2 Useful Facts and Formulae

The next results are scattered across [Sch09]. This proposition is critical for the

evaluation of Gauss sums.

Proposition 3.1. Let α P Dc�. Then

¸
µPD

e
�
cµ2{2� αµ

�
� εce

�
�α2

c{2
�a

|Dc||D|,

with

εc �
¹
2|q-c

γ2pDrpq{qcq
εqnq sqe ppc{qc � 1qoddity pDrpq{qcq

εqnq sq {8q

�
c{qc

pq{qcqnq



¹
p|q-c
p odd

γppDrpq{qcq
εqnq sq

�
c{qc

pq{qcqnq



.

Here qc � pq, cq.

The action of an element ST aST b under ρD is determined. We will use this to

compute the action of ST aST bS.

Proposition 3.2. Let γ P D and a, b P Z. Then

ST aST beγ � e psignpDq{4q ε�a

a
|Da|a
|D|

e
�
�bγ2{2

� ¸
βPDa�

e
�
β2
a{2
�
eβ�γ

The following remarks will be used commonly.

Lemma 3.3. Let c be an integer. Then

DK
c � Dc, cxc � 0, α2

c{2 � �α2
�c{2 (3.1)

If pc,Nq � pd,Nq then

Dc � Dd, D
c � Dd, Dc� � Dd� (3.2)

In particular, if pc,Nq � 1 then

Dc � D,Dc � t0u, (3.3)

and

εc � e psignpDq{8q

�
c

|D|



e ppc� 1qodditypDq{8q (3.4)
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and if c � 0 modN then

Dc � 0, Dc � D, εc � 1. (3.5)

Furthermore,

1 � e psignpDq{4q

�
�1

|D|



e p�odditypDq{4q , (3.6)

and

χD paq �

�
a

|D|



e ppa� 1qodditypDq{8q

de�nes a quadratic Dirichlet character modulo N .

The factors γp are multiplicative, and the oddity formula

signpDq �
¸
p¥3

p� excess pDq � odditypDqmod 8,

which is equivalent to ¹
p

γppDq � e psignpDq{8q ,

holds.

3.3 The Action of Γ0

�
pk
�

In order to compute the Weil representation of SL2 pZq, Scheithauer determines the

representation of Γ0 pNq �rst.

Theorem 3.4. If the level of D divides the positive integer N , then the matrix

M �

�
a b

c d

�
P Γ0 pNq acts in the Weil representation as

Meγ � χD pMq e
�
�bdγ2{2

�
edγ. (�)

The rest of this section is dedicated to a proof of this theorem in the case where

N � pk is a prime power. The following theorem justi�es that determining the

explicit formula for the action of Γ0 pNq can be reduced to validating (�) for its

generators.

Theorem 3.5. If the matrices

M �

�
a b

c d

�
and M 1 �

�
a1 b1

c1 d1

�

act in the Weil representation according to (�), then so does MM 1.
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Proof. We have that

MM 1 �

�
aa1 � bc1 ab1 � bd1

ca1 � dc1 cb1 � dd1

�
.

Then by associativity and the induction hypothesis,

pMM 1qeγ �MpM 1eγq � χD pM
1q e
�
�b1d1γ2{2

�
Med

1γ

� χD pMq e
�
�b1d1γ2{2

�
χD pM

1q e
�
�bdpd1γq2{2

�
edd

1γ

� χD pMqχD pM
1q e
�
�b1d1γ2{2� bdpd1γq2{2

�
edd

1γ.

Using that χD is multiplicative and simplifying �b1d1γ2{2� bdpd1γq2{2 we get

pMM 1qeγ � χD pMM 1q e
�
�padb1d1 � bdd12qγ2{2

�
edd

1γ

� χD pMM 1q e
�
�pab1 � bd1qdd1γ2{2

�
edd

1γ.

Since c � 0 modN ,

pMM 1qeγ � χD pMM 1q e
�
�pab1 � bd1qpcb1 � dd1qγ2{2

�
epcb

1�dd1qγ.

In the second chapter the generators of Γ0

�
pk
�
were determined. All that is

left to do is to verify (�) for each one of these generators. By syntactic induction,

using Theorem 3.5 as the induction step, it follows that (�) holds for all elements

of Γ0

�
pk
�
. The �rst generator we investigate is as simple as its action under ρD.

Proposition 3.6. The matrix �I acts according to (�), that is

�Ieγ � e psignpDq{4q e�γ.

Proof. As �I � S2, we have that

�Ieγ �
e psignpDq{4q

|D|

¸
β,µPD

e pγβ � µβq eµ �
e psignpDq{4q

|D|

¸
β,µPD

e pµβq eµ�γ.

The map β ÞÑ e pµβq is a character of D, because for any β, β1 P D,

e pµpβ � β1qq � e pµβq e pµβ1q .

The statement now follows from the fact that this character is trivial if and only if

µ P DK, that is µ � 0.

As announced, we can compute and simplify the formula for the action of an

arbitrary element of the form ST aST bS under ρD. We will use this for the special

case where ab � �1 modN .
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Lemma 3.7. For any a, b P Z we have that

ST aST bSeγ � e p3{8signpDqq ε�a

a
|Da|

|D|

¸
βPD

¸
µPDa�

e
�
γβ � bβ2{2� µ2

a{2
�
eµ�β.

Proof. By de�nition,

ST aST bSeγ �
e psignpDq{8qa

|D|

¸
βPD

e pγβqST aST beβ.

Applying Proposition 3.2 to ST aST beβ gives the desired formula.

Here, (�) is veri�ed for the last family tVa | 1 ¤ a ¤ N � 1, pa,Nq � 1u of

generators of Γ0 pNq.

Proposition 3.8. The matrix Va � ST aST�âS acts according to (�), that is

Vae
γ � χD p�aq e

�
aγ2{2

�
e�aγ.

Proof. By Lemma 3.7,

Vae
γ � e p3signpDq{8q ε�a

a
|Da|

|D|

¸
βPD

¸
µPDa�

e
�
γβ � âβ2{2� µ2

a{2
�
eµ�β.

Since pa,Nq � 1, equation (3.3) implies that Da� � D and |Da| � 1. Therefore,

Vae
γ � e p3signpDq{8q ε�a|D|

�1
¸
βPD

¸
µPD

e
�
γβ � âβ2{2� aµ2{2

�
eaµ�β.

For each µ P D, the map β ÞÑ aµ � β is an automorphism of D. Hence, we may

substitute β1 � aµ� β and get

Vae
γ � e p3signpDq{8q ε�a|D|

�1ξ,

with

ξ �
¸
β1PD

¸
µPD

e
�
aγµ� γβ1 � â paµ� β1q

2
{2� aµ2{2

	
eβ

1

.

Since paµ� β1q2{2 � a2µ2{2� aµβ1� β12{2 and by assumption aâ � �1 modN , the

expression simpli�es to

aγµ� γβ1 � â paµ� β1q
2
{2� aµ2{2 � aγµ� γβ1 � aµ2{2� µβ1 � âβ12{2� aµ2{2

� âβ12{2� γβ1 � paγ � β1qµ,
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and thus,

ξ �
¸
β1PD

e
�
âβ12{2� γβ1

� ¸
µPD

e ppaγ � β1qµq eβ
1

.

As above, the mapping µ ÞÑ e ppaγ � β1qµq is a character of D for each β1 P D. It

is trivial if and only if aγ � β1 P DK � t0u. Hence, the only surviving term in the

outer sum in ξ is the one where β1 � �aγ. We see now that ξ has the form

ξ � |D|e
�
âp�aγq2{2� aγ2

�
e�aγ.

Since

âp�aγq2{2 � âa2γ2{2 � �aγ2{2 mod 1,

ξ takes the form

ξ � |D|e
�
aγ2{2

�
e�aγ.

Combining these results we obtain

Vae
γ � e p3{8signpDqq ε�ae

�
aγ2{2

�
e�aγ

�

�
�a

|D|



e pp�a� 1qodditypDq{8q e

�
aγ2{2

�
e�aγ

� χD p�aq e
�
aγ2{2

�
e�aγ,

where we used (3.5).

This completes the proof of Theorem 3.4 for N � pk.

3.4 Tensor Products of Weil Representations

Let D � D1 `D2 be a discriminant form with D1 K D2, such that D1 and D2 are

also discriminant forms. We show that

C rDs � C rD1s b C rD2s ,

and that the Weil representation respects this decomposition in the sense that the

diagram

GLpC rDsq

SL2 pZq

GLpC rD1s b C rD2sq

�

ρD

ρD1bρD2

commutes. Our �rst concern is the decomposition of the group algebra.
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Theorem 3.9. If the discriminant form can be written as the orthogonal direct sum

D � D1 `D2, then

C rDs � C rD1s bC C rD2s .

Proof. IfR is a commutative ring, and A and B are free R-modules with bases tai|i P

Iu and tbj |j P Ju, respectively, then AbRB is free with basis taibbi | pi, jq P I�Ju.

It follows that for two groups A1 and B1,

R rA1 `B1s � R rA1s bR R rB
1s

under the correspondence

rpa, bq Ø rpab bq.

In our case we get

C rDs � C rD1 `D2s � C rD1s b C rD2s .

We will now prove that "ρD distributes over b", by verifying the statement for

the standard generators T and S of SL2 pZq, and then extending it to the whole

modular group by syntactic induction.

Theorem 3.10. The action of the generators S and T of SL2 pZq respects b in the

sense that for the unique representation eγ b eδ P D1 b D2 of an element of D we

have that

ρDpT qe
γ b eδ � ρD1pT qeγ b ρD2pT qeδ,

and

ρDpSqe
γ b eδ � ρD1pSqeγ b ρD2pSqeδ.

Proof. By de�nition of the action of T ,

ρDpT qe
γ b eδ � e

�
�pγ � δq2 {2

�
eγ b eδ.

Since pγ, δq � 0,

ρDpT qe
γ b eδ � e

�
�γ2{2� δ2{2

�
eγ b eδ.

A simple calculation yields

ρDpT qe
γ b eδ � e

�
�γ2{2

�
e
�
�δ2{2

�
eγ b eδ

� e
�
�γ2{2

�
eγ b e

�
�δ2{2

�
eδ

� ρD1pT qeγ b ρD2pT qeδ.
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The proof of the second part is similar. ρDpSq acts as

ρDpSqe
γ b eδ � ξ

¸
βPD

epβpγ � δqqeγ b eδ

� ξ
¸
β1PD1

¸
β2PD2

eppβ1 � β2qγqeppβ1 � β2qδqeγ b eδ

� ξ
¸
β1PD1

¸
β2PD2

e pβ1γq e pβ2δq eγ b eδ

� ξ
¸
β1PD1

e pβ1γq
¸

β2PD2

e pβ2δq eγ b eδ

with

ξ �
epsignpDq{8qa

|D|
�
e psign pD1q {8� sign pD2q {8qa

|D1||D2|
.

Hence, ρDpSq acts on eγ b eδ as

e psign pD1q {8qa
|D1|

¸
β1PD1

e pβ1γq eγ
1

b
e psign pD2q {8qa

|D2|

¸
β2PD2

e pβ2δq eδ

�ρD1pSqeγ b ρD2pSqeδ.

The induction step is simple, and the desired result is the following.

Corollary 3.11. For any matrix M P SL2 pZq,

ρDpMqeγ b eδ � ρD1pMqeγ b ρD2pMqeδ. (3.7)

Proof. We show that ifM,M 1 P SL2 pZq satisfy (3.7), then alsoMM 1 satis�es (3.7).

Using the induction hypothesis and that ρD is a representation,

ρDpMM 1qeγ b eδ � ρDpMq
�
ρD1pM 1qeγ b ρD2pM 1qeδ

�
� ρD1pMqρD1pM 1qeγ b ρD2pMqρD2pM 1qeδ

� ρD1pMM 1qeγ b ρD2pMM 1qeδ.

Since we proved (3.7) for the generators T and S of SL2 pZq, it follows that (3.7)
holds for all M P SL2 pZq.

3.5 Junction: Action of Γ0 pNq and Γ pNq

Let Q � Z be an index set for the Jordan decomposition of D, i.e.

D �
à
qPQ

Drqεqnq s.
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Whenever
Â

q or
À

q occurs, q runs through Q. Because the Jordan components

are pairwise orthogonal, we can extend the results from the previous section to this

decomposition of D, that is

C rDs �
â
qPQ

C rDrqεqnq ss ,

and ρD � bqρDrqεqnq s such that the diagram

GLpC rDsq

SL2 pZq

GLp
Â

pC rDrqssq

�

ρD

Â
q ρDrqs

commutes. We can now prove the main result of this chapter.

Theorem 3.12. Let D be a discriminant form such that the level of D divides

the positive integer N . Then the matrix M �

�
a b

c d

�
P Γ0 pNq acts in the Weil

representation as

Meγ � χD pMq e
�
�bdγ2{2

�
edγ. (�)

Proof. The element 1eγ of C rDs can be uniquely represented as

eγ �
â
qPQ

eγq ,

with eγq P Drqεqnq s. From Corollary 3.11 it follows that

ρDpMqeγ � ρDpMq
â
qPQ

eγq �
â
qPQ

ρDrqεqnq spMqeγq .

Now let q P Q. Then the matrix M is in Γ0 pqq � Γ0 pNq. Furthermore, for p P Q

with q � p, it is true that the levels of the corresponding Jordan blocks Drqεqnq s

and Drpεpnps are coprime. In this situation, the level of Drqεqnq s divides the prime

power q. In section 3.3 we proved that (�) holds if N is a prime power. Thus,

ρDpMqeγ �
â
qPQ

χDrqεqnq s pMq e
�
�bdγ2

q {2
�
eγq

�
¹
qPQ

χDrqεqnq s pMq e
�
�bdγ2

q {2
�â
q1PQ

eγq1

�
¹
qPQ

χDrqεqnq s pMq e
�
�bdγ2

q {2
�
eγ
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where we �rst applied Corollary 3.11 and secondly (�) for prime powers, proved in

section 3.3. Now since�
a

|Drqεqnq s|


�
a

|Drpεpnps|



�

�
a

|Drqεqnq s `Drpεpnps|



,

and

sign pDrqεqnq sq � sign pDrpεpnpsq � sign pDrqεqnq s `Drpεpnpsq ,

it is easy to see that

χDrqεqnq s pMqχDrpεpnp s pMq � χDrqεqnq s`Drpεpnp s pMq .

Drqεqnq s and Drpεpnps are orthogonal. Thus,

γ2
q {2� γ2

p{2 � pγq � γpq
2{2.

These facts imply that

¹
qPQ

χDrqεqnq s pMq e
�
�bdγ2

q {2
�
� χD pMq e

�
�bdγ2{2

�
,

and therefore

ρDpMqeγ � χD pMq e
�
�bdγ2{2

�
eγ.

Note that as a special case we obtain that the action of Γ pNq is trivial. This

was �rst found out by Schoeneberg.
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