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Abstract
We introduce displayed univalent reflexive graphs, a natural analogue of

displayed categories, as a framework for uniformly internalizing composite
mathematical structures in homotopy or cubical type theory. This frame-
work is then used to formalize the definitions of, and equivalence of, strict
2-groups and crossed modules. Lastly, foundations for the development of
higher groups from the classifying space perspective in cubical type theory
are laid. All results are formalized in Cubical Agda.

1 Introduction
We provide a framework for constructing identifications between composite types
in univalent foundations. In univalent foundations, mathematical structures
(such as groups, rings, categories, etc.) are represented as types, and the types
are interpreted (informally and in models) as∞-groupoids. The identity types of
a type represent the ways in which elements of that type can be identified. From
Voevodsky’s univalence axiom it follows that the identity type A =Type B in the
universe, Type, for two types A and B, is equivalent to the type of equivalences
A ' B. It is a prototype for the structure identity principle (SIP), as described
by Aczel [1]:

Equivalent mathematical structures are structurally identical.

The meaning of “equivalence” depends on the kind of structure we’re talking
about. For groups and rings it is isomorphism, while for categories it is equivalence
of categories, etc. Since type theory is a structural foundation, equivalent
structures are structurally indistinguishable. The SIP goes one step further,
and requires that equivalent structures A and B can be identified, so that any
property or construction made for A can be applied to B. This is exactly what
is captured by the identity type and its elimination rule. Recently, the structure
identity principle has also been called the univalence principle [4].

Here, we consider the problem of how to implement the SIP for complicated
structures built out of simpler components. We describe the SIP for a type in
terms of a univalent reflexive graph (URG) structure. To construct the SIP for
a composite type, we take inspiration from work on displayed categories [3] and
bicategories [2], and introduce the notion of a displayed univalent reflexive graph
(DURG) structure. We apply this framework to the problem of defining crossed
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modules and strict 2-groups as URGs, and we then use the (D)URG structures
in order to prove that the corresponding types are equivalent. An important
benefit of this approach is that we can leverage transport of structure in the
lower levels of the hierarchy in order to obtain equivalences higher up.

These particular structures (crossed modules and strict 2-groups) also have
natural 1-category structures, and an alternative would have been to define
the (displayed) 1-category structures instead. But not every mathematical
structure has a 1-category structure. (Indeed, the type of objects of a univalent
1-category is 1-truncated. And some types of structure have no interesting
category structure at all.) URGs apply to all structures, whether truncated or
not. To illustrate this, we also construct the SIP for various kinds of higher
groups.

Our framework of (D)URGs can be applied to any type A to specify a
convenient mathematical notion of equivalence between elements of A. This
allows us to hide the specifics of the type theory in use and hence enables uniform
reasoning across similar type theories. In fact, we can view a URG structure on A
as a truncated part of an∞-groupoid structure on A. At the moment, we do not
know whether it is possible to define the type of∞-category structures on a type
inside type theory. (It’s possible in 2-level type theory [7]). In contrast, we do
know how to define the type of∞-groupoid structures on A: it is the contractible
type. Likewise, the type of URG structures on a type is also contractible. So
it seems like nothing is gained. What is gained is an intensionally different
presentation of the identifications in a type that can be more useful. (Likewise,
using a hypothetical definition of (∞, 1)-category structures one could carve out
the ∞-groupoid structures, and these could be intensionally different than the
ones given by iterated identity types.)

We have implemented our results1 in the cubical library [15] for Cubical
Agda [18], which is a switch for Agda that implements cubical type theory [10, 12].

Related work
Coquand and Danielsson [11] derived the SIP in Agda for a range of structures,
including 1-truncated, first-order algebraic structures. Using first-order logic with
dependent sorts (FOLDS), the SIP for more complicated, but purely relational,
structures of finite truncation level has been developed [4]. (This work includes
relational definitions of 1-categories, †-categories, and bicategories.)

Escardó [13] proposed a technique for deriving the SIP for structures on a
type using the so-called standard notion of structure (SNS). This is a special case
of a DURG structure where the base structure is the URG structure provided by
the univalence axiom for the universe of types. A variation of this was previously
implemented in the cubical library, as reported in [6].

We are the first to formalize the equivalence of types between crossed modules
and strict 2-groups. Previously, von Raumer [19] formalized the related equiva-
lence of precategories of generalized crossed modules and double groupoids [8]
in the HoTT-mode for Lean 2. However, that work didn’t establish the SIP, or
equivalently, prove that these precategories are univalent.

Also, in the HoTT-mode for Lean 2, the equivalence between pointed con-
nected 1-types and groups has previously been formalized [9]. The formalization

1https://github.com/Schippmunk/cubical
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here is novel, because cubical type theory natively supports higher inductive
types and the resulting arguments thus become vastly simpler.

Outline
In Section 2 we define URGs and DURGs, and derive various constructions
on these. Then in Section 3 we define hierarchies of structures building up to
the definitions of strict 2-groups and crossed modules with natural notions of
equivalence. In Section 4 we prove the SIP for various kinds of higher groups
and we prove that 1-groups are equivalent to the usual axiomatic notion of a
group. We conclude in Section 5 with an outlook towards future work.

2 Displayed Structures
A displayed category D over a category C is equivalent to a category D′ and a
functor D′ → C, but instead of having a single collection of objects with a map
to the objects of C, the objects are given as a family indexed by objects of C,
and similarly for the morphisms. By taking the total category of a displayed
category, the process of adding structure can be iterated.

The type-theoretical analogue, a displayed type B over a type A, is simply a
type family over A. Via fibrant replacement, this data is equivalent to that of a
type B′ together with a function B′ → A. The total category corresponds to
the Σ-type (a : A)×B a.

The structure of a type is reflected by its identity type. Usually one works
with an explicit representation – a characterization – of these identity types. For
instance, instead of paths between groups one prefers isomorphisms. Therefore,
instead of mere types, we use “displayed characterizations of identity types”.

Definition 2.1. A univalent reflexive graph (URG) structure on a type A is a
triple2 〈∼=A, ρA,uniA〉 consisting of a reflexive binary relation

∼=A : A→ A→ Type, ρA : (a : A)→ a ∼=A a,

and a witness of univalence, that is a proof that the natural map of type

(a = b)→ a ∼= b,

which sends refl to ρA, is an equivalence for all a, b : A.

It is often convenient to use the following paraphrase of the fundamental
theorem of identity types [17, Thm. 5.8.4] to construct URGs.

Theorem 2.2. A reflexive graph ∼= on A is univalent if and only if the ∼=-
singleton (b : A)× a ∼= b is contractible for every a : A.

Examples of URGs include observational equality on the natural numbers,
equivalences in a univalent universe and univalent 1-precategories. Any type has
a trivial URG structure given by the identity type. It is extensionally the only
one: the type of small univalent graphs on A is contractible.

2We leave the subscript and last two components implicit whenever appropriate.
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Definition 2.3. Let ∼=A be a URG structure on A. A displayed univalent
reflexive graph (DURG) structure on B : A→ Type is a triple3 〈∼=B

A , ρ
B
A ,uniBA〉

consisting of a displayed relation of type

{a, a′ : A} → B a→ a ∼=A a
′ → B a′ → Type

and a reflexivity term of type

{a : A} → (b : B a)→ b ∼=B
ρa b

′,

such that the natural map

b =B a b
′ → b ∼=B

ρa b
′

is an equivalence for all a : A and b, b′ : B a.

Propositions are particularly easy to display, cf. [3, Ex. 3.6].

Proposition 2.4. Let P : A→ Type≤−1 be a propositional family over a URG.
Then p ∼=P

q p
′ :≡ 1 defines a DURG structure on P .

Proof. By Theorem 2.2, it suffices to show that the ∼=P
ρ a-singleton (p′ : P a)×

p ∼=P
ρ a p

′ is contractible for all a : A and p : P a. By definition, that singleton is
just (p′ : P a)× 1 and hence, equivalent to the inhabited proposition P a.

As promised, a DURG structure on a type family induces a URG structure –
a characterization of the identity types – on its total type, cf. [3, Thm. 7.4].

Theorem 2.5. For any DURG structure ∼=B
A on B : A → Type there is an

associated total URG
∫ ∼=B

A on (a : A)×B a with the relation

〈a, b〉 ∼=Σ 〈a′, b′〉 :≡ (p : a ∼=A a
′)× b ∼=B

p b′.

Proof. Reflexivity follows from the reflexivity of the (fiberwise) relations on A
and B. The ∼=Σ-singleton

(〈a′, b′〉 : (a′ : A)×B a′)× (p : a ∼=A a
′)× b ∼=B

p b′

at 〈a, b〉 is equivalent to

(〈a′, p〉 : (a′ : A)× a ∼=A a
′)× (b′ : B a′)× b ∼=B

p b′,

which is a Σ-type of contractible types.

Lemma 2.6. If there are URG structures on types A and B, we can display B
over A via b ∼=p b

′ :≡ b ∼=B b′. Taking the total space yields the product URG
structure on A×B.

Lemma 2.7. If ∼=B
A and ∼=C

A are DURG structures over the same type A, then
∼=B
A can be lifted to be displayed over

∫ ∼=C
A by ignoring the C-component:

b ∼=〈ρ a,ρ c〉 b′ :≡ b ∼=ρ a b
′.

3We leave the second and third component, and the sub- and superscript types implicit
whenever appropriate. Thus, we write b ∼=B

q b′, or even b ∼=q b′, instead of (∼=B
A) b q b′ for any

a, a′ : A, q : a ∼=A a′, b : B a, and b′ : B a′.
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In order to construct fiberwise equivalences between structures it is necessary
to reassociate the towers of structure at hand.

Theorem 2.8. Given a DURG structure on C : (a : A) × B a → Type over∫ ∼=B
A, the displayed relation

〈b, c〉 ∼=p 〈b′, c′〉 :≡ (q : b ∼=p b
′)× c ∼=〈p,q〉 c′

defines a DURG structure on λ a 7→ (b : B a)× C〈a, b〉.

Proof. Let a : A. The relational singleton

(〈b′, c′〉 : (b′ : B a)× C〈a, b′〉)× (p : b ∼=ρ a b
′)× c ∼=〈ρ a,p〉 c′

at 〈b, c〉 is equivalent to the contractible type

(〈b′, p〉 : (b′ : B a)× b ∼=ρ a b
′)× (c′ : C〈a, b′〉)× c ∼=〈ρ a,p〉 c′.

Corollary 2.9. Two DURG structures ∼=B
A and ∼=C

A with a common base structure
induce a product DURG structure on λ a 7→ B a× C a.

Proposition 2.10. Any DURG structure ∼=B
A induces a URG structure on

(a : A)→ B a with the relation

f ∼=Π g :≡ (a : A)→ f a ∼=ρ a g a.

Proof. Univalence of ∼=B
A and function extensionality produce the desired equiva-

lence (
(a : A)→ f a ∼=ρ a g a

)
'
(
(a : A)→ f a = g a

)
' (f = g).

Now, let us explore how to use URG structures to construct equivalences
between types. Oftentimes, equivalences are constructed from quasi-inverse maps.
The natural analog for types with URG structures is a relational isomorphism:
A relational isomorphism of graphs 〈A,∼=〉 and 〈A′,∼=′〉 consists of maps f and
g back and forth, such that g(f a) ∼= a and f(g a′) ∼= a′ for all a : A and
a′ : A′. If the graphs are univalent, such a relational isomorphism induces a
quasi-isomorphism and hence an equivalence between the underlying types A
and A′.

To generalize this to displayed structures, we note that if ∼=B
A is a DURG

structure on a type family B : A → Type, and f : C → A is any map, then
we can pull back the displayed relation to give a family of reflexive graphs
〈B (f c),∼=B

ρ(f c)〉 indexed by c : C.

Theorem 2.11. Let f : A ' A′ be an equivalence of types which carry URG
structures. Furthermore, let ∼=B

A and ∼=B′

A′ be DURG structures. Any fiberwise
relational isomorphism g between the underlying family of reflexive graphs of ∼=B

A

and the pullback of ∼=B′

A′ along f , over A, induces an equivalence of total spaces

(a : A)×B a ' (a′ : A′)×B′ a′.

Proof. As for (non-displayed) univalent graphs, we obtain a fiberwise equivalence
(a : A)→ B a ' B′(f a) from g. According to [17, Thm. 4.7.7], this yields an
equivalence

(a : A)×B a ' (a : A)×B′(f a).
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A pseudo-inverse of f induces a pseudo-inverse of

λ 〈a, b〉 7→ 〈f a, b〉 : (a : A)×B′(f a)→ (a′ : A′)×B′ a′.

Note the asymmetry of the previous statement. An a : A is fixed and we
prove an isomorphism between the structure that B adds to a, and that which
B′ adds to f a, the element a viewed as a term of type A′. A more symmetric
version could be obtained by pulling back along f to prove that the fiberwise
maps cancel on the left, and along f−1 to prove that they cancel on the right.

Let us discuss alternative definitions of (D)URGs. Instead of the second and
third axioms in the definition of a (D)URG one could pack the same data in the
family of equivalences

uni : (a, a′ : A)→ (a ∼=A a
′) ' (a =A a

′),

and

uni : {a : A} → (b, b′ : B a)→ (b ∼=B
ρa b

′) ' (b =B a b
′),

respectively. However, being able to choose the reflexivity term turns out to be
more practical than having to deal with the inverse image ρ a of refl under the
univalence equivalence.

For the cubical setting, Evan Cavallo suggested the following notion of
displayed univalent graph:

uni : {a, a′ : A} → (b : B a)→ (p : a ∼=A a
′)→ (b′ : B a′)

→ (b ∼=B
p b′) ' PathP (λ i 7→ B(uni a a′ p i)) b b′

Why are uni and the displayed uni equivalent choices? The underlying URG
satisfies identity induction, but for the relation rather than paths. This “relational
J” can be used to reduce uni to uni.

The formulation with uni is advantageous in cubical type theory, because
there we have other ways to establish equivalences besides path induction, so
the reflexivity terms play a less crucial role. We have formalized both versions,
but chose the version with uni to merge into the cubical library. However, for
standard HoTT or informal univalent mathematics, these dependent paths are
less practical. Therefore, we have presented the framework using the reflexivity
formulation here.

Regardless of the particular choice of type theory and (D)URG structure, a
(displayed) univalent graph structure is reflexive in any case. So, in a general
context, these structures may simply be called “(displayed) univalent graph
structures”, omitting the “reflexive” part when it is not an explicit axiom.

3 Equivalence of Strict 2-groups and Crossed
Modules

A strict 2-group is an internal category

G1 ×G0 G1 G1 G0
◦

σ
ι
τ
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in the category of groups. The group homomorphisms σ, τ, ι and ◦ are the source,
target, identity-assigning and composition operations. They are subject to the
following coherence conditions. The composition ◦ is associative and satisfies
left and right unit laws, and the source and target of identity and composite
morphisms behave as expected. The homomorphism property of ◦ is known as
the interchange law. It states that (c ·1 d) ◦ (a ·1 b) = (c ◦ a) ·1 (d ◦ b).

A crossed module G0 Hϕ

α

consists of a group homomorphism ϕ and
an action of G0 on the group H, α : G0 ×H → H. We write the action infix.
Moreover, ϕ needs to be α-equivariant, that is ϕ(g αh) = g(ϕh)g−1, and α has
to satisfy the so-called Peiffer-identity (ϕh)αh′ = hh′h−1.

Strict 2-groups and crossed modules are equivalent as categories. In the
following we use DURG structures to establish their type-theoretical incarnation
as a tower of structure over a group and prove that the two maps

G0 H G0 H oα G0

G0 G1 kerσ G0 G1

α

ϕ

π2

ι2

τϕ

σ

ι

τ

Adι2

τ◦ι′

ι′
σ

ι

τ

define an equivalence of types. Here Ad denotes the adjoint action.

We begin with the equivalence of split monomorphisms and group actions.
From the SIP for groups we obtain a URG structure on the type of groups.

As described in Lemma 2.6, this also induces a URG structure ∼=Grp2 on the
type of pairs of groups.

Proposition 3.1. Homomorphisms can be displayed over pairs of groups. In
other words, there is a DURG structure on the type family

λ 〈G,H〉 7→ (G→Grp H).

Proof. An element of 〈G,G′〉 ∼=Grp2 〈H,H ′〉 is a pair 〈p, q〉 of isomorphisms. The
displayed relation is given by commutativity of the following square:

G H

G′ H ′

f

p ∼ q∼

f ′

Reflexivity of this relation with respect to the identity group isomorphisms on
G and H is trivial. The relational singleton at f is

(f ′ : G→Grp H)× f ∼=〈id,id〉 f ′.

Since function extensionality extends to group homomorphisms, the second
component is equivalent to f = f ′, and the whole Σ-type to the =-singleton at
f .
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In a similar fashion we can define a DURG structure on λ〈G,H〉 7→ (H →Grp
G). These two can be combined to obtain a DURG structure on λ 〈G,H〉 7→
(G→Grp H)× (H →Grp G). Taking the total space we obtain a URG structure
on the type of pairs of groups with homomorphisms back and forth. Being
a section-retraction-pair of group homomorphisms is a universally quantified
equality statement in a set and thus a mere proposition. Hence, Proposition 2.4
can be used to display this split condition.

Proposition 3.2. Group actions can be displayed over pairs of groups.

Proof. As above we define the displayed relation for group action structures to
be commutativity of this square:

G×H H

G′ ×H ′ H ′

α

〈p,q〉 ∼ q∼

β

Since the axioms for group actions are mere propositions, they can easily be
imposed using Proposition 2.4.

Theorem 3.3. The type of split monomorphisms in groups is equivalent to the
type of actions.

Proof. By multiple applications of Theorem 2.8 we obtain DURG structures on
the type family that assigns to a group G the type of split monomorphisms with
source G, and also the type family that assigns to G the type of actions of G on
another group. We want to apply Theorem 2.11 to the identity equivalence on
the type of groups.

Fix a group G0. It is easy to verify that for an action G0 H,α there

is a split monomorphism G0 H oα G0.
π2

ι2
Conversely, given a split mono

G0 G1,
σ

ι
the adjoint action of G1 on kerσ can be extended to G0 by

precomposing with ι.
Having constructed the maps back and forth, it remains to be shown that

they are relationally inverse to each other.
On the left, this requires an isomorphism ϕ such that

G0 × kerπ2 kerπ2

G0 ×H H

Adι2

〈id,ϕ〉 ϕ

α

commutes. An element of kerπ2 consists of an h : H, g : G0 and a proof
that g = 1G0 . We leave it to the reader to verify that the ϕ that extracts the
H-component satisfies above requirements.

On the right, we need to construct an isomorphism ψ such that the squares

kerσ oAdι G0 G0

G1 G0

π2

ψ id

σ

and
G0 kerσ oAdι G0

G0 G1

ι2

id ψ

ι
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commute. A valid choice is ψ〈h, g, p〉 :≡ h ι g.

In the following we show the equivalence of precrossed modules and internal
reflexive graphs (in the category of groups) by building on the equivalence from
Theorem 3.3.

Definition 3.4. A precrossed module consists of an action of G0 on H together
with an equivariant homomorphism ϕ : H →Grp G0. An internal reflexive
graph consists of a split monomorphism G0 G1

σ

ι
with a second retraction

τ : G1 →Grp G0.

We may display the precrossed module structure over actions by lifting the
homomorphism structure twice using Lemma 2.7, taking the total space, and
imposing equivariance using Proposition 2.4. As always, Theorem 2.8 reassociates
these layers of structure. A similar argument allows us to display the second
retraction over split monomorphisms.

Theorem 3.5. The type of precrossed modules is equivalent to the type of
internal reflexive graphs.

Proof. We aim to invoke Theorem 2.11. Fix an action α of G0 on H and its
corresponding split mono G0 H oα G0.

π2

ι2
We need to construct relationally

inverse maps that turn an α-equivariant homomorphism ϕ into a retraction τϕ of
ι2, and any retraction τ of ι2 into an α-equivariant homomorphism ϕτ . For the
first direction, we define τϕ〈h, g〉 :≡ (ϕh)g. Conversely, we put ϕτ :≡ τ ◦Grpι1
with ι1 : kerπ1 ↪→Grp H oα G0 the first inclusion and π1 the first projection of
the semidirect product. To prove that these constructions are relationally inverse
is to give homotopies τϕ ◦ ι1 ∼ ϕ and τ ∼ τϕ. The details of these computations
can be found in the formalization.

The Peiffer condition for internal reflexive graphs is not well known. It is
essentially the Peiffer condition for crossed modules under the transformation
from Theorem 3.5.

Definition 3.6. The Peiffer condition for an internal reflexive graph G0 G1

σ

ι

τ

is

(a, b : G1)→ (ι(σ b))a(ι(σ a−1))(ι(σ b−1))b(ι(τ a)) = ba.

Theorem 3.7. The type of crossed modules is equivalent to the type of Peiffer
graphs.

Proof. Being mere propositions, it is easy to display the Peiffer conditions for
precrossed modules and internal reflexive graphs. Moreover, the statement of
the theorem follows from the logical equivalence of the Peiffer condition for a
precrossed module and the Peiffer condition of its corresponding internal reflexive
graph as constructed in Theorem 3.5. The calculations to verify this logical
equivalence can be found in the formalization.

A strict 2-group is an internal reflexive graph together with a vertical compo-
sition operation. We prove that Peiffer graphs are equivalent to strict 2-groups.
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Definition 3.8. Fix an internal reflexive graph G as in Definition 3.6. Two
arrows b, a : G1 are composable, if σ b = τ a. A vertical composition operation on
that graph consists of a map

_ ◦_ _ : (b, a : G1)→ isComposable b a→ G1

together with proofs that ◦ is respected by τ and σ, that it is a homomorphism,
associative, and satisfies left and right unit laws with respect to ι.

Lemma 3.9. If ◦ is a vertical composition operation, then b ◦p a = b(ι(σ b−1))a.

The classical proof of Lemma 3.9 can be found in [16]. It goes through in
type theory.

Corollary 3.10. The type of vertical compositions on G is a mere proposition.

Theorem 3.11. The type of Peiffer graphs is equivalent to the type of internal
reflexive graphs with a vertical composition operation.

Proof. We use Proposition 2.4 to display the vertical compositions over internal
reflexive graphs. Using Theorem 2.11 once again, it suffices to prove that the
Peiffer condition is logically equivalent to the type of vertical compositions on G.

If G is Peiffer, we need to show that b ◦p a :≡ b(ι(σ b−1))a has the properties
of a vertical composition. The verification of the homomorphism property is not
too difficult. The other properties are satisfied by ◦ even if G is not Peiffer.

4 Higher Groups
This section is concerned with higher groups as introduced in [9]. After estab-
lishing some results about pointed types we prove the SIP for (n, k)-groups
and their homomorphisms. This is succeeded by the definition of the first
Eilenberg–MacLane space in cubical type theory and a proof that (0, 1)-groups
are equivalent to axiomatic groups.

A universe is univalent if and only if A ∼= B :≡ A ' B defines a URG
structure. We may display pointedness over the universe by showing that
a ∼=e b :≡ e a = b defines a DURG structure on λ (A : Type) 7→ A. Note
that this is beyond the scope of displayed categories, since there’s no truncation
requirement. Taking the total space of this DURG structure shows that pointed
equivalences characterize the identity types of pointed types.

Let 〈A, ∗A〉 be a pointed type. A pointed family is a type family B : A→ Type
together with a base point ∗B : B ∗A. A pointed section consists of a function
f : (a : A)→ B a and a proof f∗ : f ∗A = ∗B . For two pointed sections we have
the two kinds of pointed homotopies

f ∼∗ g :≡ (a : A)→∗ 〈f a = g a, f∗ · g∗−1〉

and

f ∼P
∗ g :≡ (H : f ∼ g)× PathP (λ i 7→ H ∗A i = ∗B) f∗ g∗.

Theorem 4.1. Pointed function extensionality holds, i.e., any two pointed
sections f and g satisfy

(f ∼∗ g) ' (f ∼P
∗ g) ' (f = g). (1)
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Proof. The two kinds of pointed homotopies consist of an H : f ∼ g and a filler
of these squares:

f ∗A g ∗A

f ∗A g ∗A

f∗ · g∗−1

H ∗A

g ∗A ∗B

f ∗A ∗B

g∗

H ∗A

f∗

The cubical groupid laws and univalence can be used to show that

(H∗A = f∗ · g∗−1) = ((H∗A)−1 · f∗ = (H∗A)−1 · (H∗A · g∗))
= ((H∗A)−1 · f∗ · refl = g∗)
= PathP (λ i 7→ H ∗A i = ∗B) f∗ g∗.

Transport along this path induces the first equivalence in (1). The second
equivalence is given by the the map that sends 〈H,H∗〉 to the path λi 7→ 〈λa 7→
H a i,H∗ i〉.

Definition 4.2. For integers n ≥ 0 and k ≥ 1, we define the type

〈n, k〉Grp :≡ (BkG : Type)×BkG× isConnk−1B
kG× isTruncn+k B

kG

of k-tuply groupal n-groupoids or (n, k)-groups.4

Connectedness and truncatedness are mere propositions. By displaying these
properties over pointed types and taking the total space we obtain a URG
structure on 〈n, k〉Grp, and we see that pointed equivalences characterize the
identity types of (n, k)-groups.

Proposition 4.3. Homomorphisms of (n, k)-groups can be displayed over pairs
of (n, k)-groups. The displayed relation on the family λ〈BkG,BkH〉 7→ (BkG→∗
BkH) is given by the type of pointed homotopies filling the following square:

BkG BkH

BkG′ BkH ′

f

∗
p ∼

∗
q ∼

∗
f ′

∗

This uses pointed function extensionality. As a consequence, we see that the
identity types of 〈n, k〉Grp-homomorphisms are just homotopies of the underlying
functions. This is used in the proof of the next theorem (cf. [9, p. 9]).

Theorem 4.4. The type BkG→∗ BkH is n-truncated and 〈n, k〉Grp is (n+ 1)-
truncated.

In the following we construct the first Eilenberg–MacLane space of a group
using higher inductive type in the setting of cubical type theory, and we show
that this construction is a right inverse to the first homotopy group. The main
reference for the construction in standard HoTT is [14].

4A slightly better name is perhaps k-symmetric (n + 1)-groups. Here we stick to the
terminology of [9].
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Definition 4.5. The first Eilenberg–MacLane space of a group G is the higher
inductive type E1G, abbreviated to E , with constuctors

baseE : E ;
loopE : G→ baseE = baseE ;

compE : (g h : G)→ PathP (λ i 7→ baseE = loopEh i) (loopEg) (loopE(gh));
squashE : isTrunc1 E .

The compE constructor fills the square

a c

a b.

loopE(gh)

loopEg

loopEh

An equivalent condition is loopE(gh) = loopEg · loopEh, but the square is more
convenient to reason about in cubical type theory.

Theorem 4.6. Let B : E → Type≤1 be a family of groupoids over E, and
∗ : B baseE . If there is a map

toLoop : (g : G)→ PathP (λ i 7→ B (loopEg i)) ∗ ∗

such that the dependent square

∗ ∗

∗ ∗

toLoop(gh)

toLooph

toLoop g

(2)

has a filler toIsComp for all g h : G, then there is a function f : (x : E)→∗ B x.

Proof. We define f by E-induction:

f baseE :≡ ∗B
f(loopE g i) :≡ toLoop g i

f(compE g h i j) :≡ toIsComp g h i j

The fourth case, a path over squashE , asks for a proof that B is a 1-type over E ,
but that follows from the assumptions.

Elimination into the proposition isConn0 E shows that E is connected. In
particular, it is a (0, 1)-group. If B is constant, Theorem 4.6 becomes the
recursion principle

(G→Grp π1〈B, ∗B〉)→ (E1G→∗ 〈B, ∗B〉).

Theorem 4.7. There is an equivalence

〈0, 1〉Grp Grp.
π1

E

12



The rest of this section constitutes a proof of this theorem. We have estab-
lished URG structures on both 〈0, 1〉Grp and Grp, so it suffices to show that the
two maps are relational inverses. We use parts of the adjunction

(E1H →∗ BG) ' (H →Grp π1BG).

Theorem 4.8. The group π1(E1G) is isomorphic to G.

This is proved using the encode-decode method. It shows cancellation on the
right in Theorem 4.7.

Proposition 4.9. There is a map

ϕ : (π1(E1H)→Grp π1BG)→ (E1H →∗ BG)

which restricts to isomorphisms.

Proof. Let f : π1(E1H)→Grp π1BG. From Theorem 4.8 we have a g : H →Grp
π1(E1H). Put

h :≡ f ◦Grp g : H →Grp π1BG.

The type BG is a 1-type, so by E1H-recursion we have a map h′ : E1H → BG.
Pointedness of h′ is trivial. Being a map between pointed connected types, h′ is
surjective.

Assume now that f is an isomorphism to begin with. If we can show that h′
is an embedding, then it is also an equivalence (cf. [17, Theorem 4.6.3]).

By the elimination principle for pointed connected types, it suffices to show
that aph′ : (x = y) → (h′ x = h′ y) is an equivalence at x ≡ y ≡ baseE . Let e
be the equivalence from Theorem 4.8. There is a trivial homotopy f ◦ e ∼ aph′ .
The 2-out-of-3 property of equivalences implies that aph′ is an equivalence.

We show cancellation on the left in Theorem 4.7. Let BG : 〈0, 1〉Grp and
f : π1(E1(π1BG))→Grp π1BG be the isomorphism from Theorem 4.8. Applying
Proposition 4.9 to H :≡ π1BG and f produces E1(π1BG) '∗ BG.

5 Conclusion and Future Work
For many kinds of composite structure, the natural notion of equivalence is built
up from the notions of equivalence of the component parts in a canonical way,
using the constructions implemented in Section 2. A natural next step is to use
reflection to automate this process. This has been achieved for the special case
of standard notion of structure in [6], and we are working on extending that
work to cover (D)URGs in general.

An intriguing variation of this would be to use that reflexive graphs form
a presheaf (∞, 1)-topos, with the URGs as a subtopos. These thus carry the
structures of a model of type theory. Indeed, DURGs correspond to type families
in the model in URGs. If we could internalize these models, this would provide
an alternate way of automating the construction of URG structures.

Another natural direction will be to facilitate the extension of a URG structure
to a compatible category or bicategory structure, in which the isomorphisms
become the univalent relation. Ideally, this will also be automated, so that for
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instance 1-types of algebraic structures can automatically be given a compatible
univalent category structure and underlying URG structure.

In Section 4 we constructed the delooping of a group as a higher inductive
type. A natural next step will be to define the type of coherent weak 2-groups
and prove this is equivalent to the type of 2-groups. This will similarly involve
defining the delooping of a weak 2-group as a higher inductive type. Finally, we
can then hope to prove that the identifications between 2-groups presented by
crossed modules are given by invertible butterflies [5], and that every 2-group
can be presented by a crossed module if the principle that sets cover 1-types is
assumed. (This says that for every 1-type X there merely exists a set Y and a
surjection f : Y → X.)
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