
Mathematics Department
Logic

Higher Groups via Displayed
Univalent Reflexive Graphs in
Cubical Type Theory
Master thesis by Johannes Philipp Manuel Schipp von Branitz
Date of submission: October 22, 2020

1. Review: Prof. Dr. Thomas Streicher
2. Review: Dr. Ulrik Buchholtz
Darmstadt

Higher Groups via Displayed Univalent Reflexive Graphs in Cubical Type Theory

Master thesis by Johannes Philipp Manuel Schipp von Branitz

1. Review: Prof. Dr. Thomas Streicher
2. Review: Dr. Ulrik Buchholtz

Date of submission: October 22, 2020

Darmstadt

Abstract

This thesis introduces displayed univalent reflexive graphs, a natural analogue of displayed
categories, as a framework for uniformly internalizing composite mathematical structures
in homotopy or cubical type theory. This framework is then used to formalize the definition
of and equivalence of strict 2-groups and crossed modules. Lastly, foundations for the
development of higher groups from the classifying space perspective in cubical type theory
are laid. Most results are formalized in Cubical Agda.

3

Contents

1 Introduction 7
1.1 Overview . 9
1.2 Contributions . 11
1.3 Acknowledgments . 12

2 Cubical Type Theory 13
2.1 Dependent Type Theory . 13
2.2 Path Types . 14
2.3 Cubical Groupoid Laws . 18
2.4 Functions, Equivalences and Univalence . 21
2.5 Truncated and Connected Types . 25
2.6 Groups . 28

3 Displayed Structures 31
3.1 Motivation . 31
3.2 Displayed Categories . 33
3.3 Univalent Reflexive Graphs . 34
3.4 Displayed Univalent Reflexive Graphs . 38
3.5 Operations on Displayed Univalent Reflexive Graphs 39
3.6 Constructing Equivalences Using Displayed Univalent Reflexive Graphs . . 43

4 Equivalence of Strict 2-Groups and Crossed Modules 47
4.1 Strict 2-Groups . 47
4.2 Crossed Modules . 50
4.3 Group Actions and Split Monomorphisms . 51
4.4 Precrossed Modules and Internal Reflexive Graphs 60
4.5 Crossed Modules and Peiffer Graphs . 65
4.6 Peiffer Graphs and Strict 2-Groups . 68

5

5 Higher Groups in Cubical Type Theory 73
5.1 Pointed Types . 73
5.2 Homotopy Groups . 78
5.3 Higher Groups . 79
5.4 Eilenberg-MacLane Spaces . 81
5.5 Delooping Groups . 85

6 Formalization 89
6.1 The Code . 89
6.2 Performance . 89
6.3 Conventions . 90

7 Conclusion 91
7.1 Discussion . 91
7.2 Future Work . 94

Bibliography 96

Thesis Statement 100

6

1 Introduction

Homotopy type theory, HoTT in short, is a flavour of intensional Martin-Löf dependent
type theory, where identities are first class citizens – between any two terms there is an
inductive type of identifications between them. Identifications, now being terms of the
same type themselves, give rise to types of identifications between identifications, and so
on and so forth.
One fundamental idea in the use of HoTT is Voevoedsky’s univalence axiom. Univalence
states that identifications of types are ‘the same as’ equivalences between types. This
broadens the scope of equality, allowing isomorphic structures to be identified.
The HoTT book [Uni13] gives an excellent introduction to univalent foundations. It
proposes homotopy type theory as a foundation for mathematics while explaining how
reasoning can be done informally within the type theory, avoiding technicalities, but
preserving the ability to formalize any statement if necessary.
Buchholtz [Buc19] discusses how close HoTT is to being a valid foundation for all of
mathematics. Central to that discussion is the problem of defining certain higher structures
in the type theory. Some structures, like (∞, 1)-categories, seem impossible to construct
in standard HoTT. Overcoming these issues is an active area of research. One outcome
of this research has been a variety of type theories. For instance, some have additional
axioms or type formers, or two levels of types.
Cubical type theory (CTT) is one of the products of this research. Instead of inductive
identity types, there are path types. A path is a function on a formal unit interval. An
object parametrized by n variables of that interval can be viewed as an n-dimensional
cube.
CTT resolves the problem that the univalence axiom – being an axiom – has no computa-
tional meaning in HoTT. Derivability of univalence and hence also function extensionality
renders cubical type theory a candidate for a computational foundation for univalent
mathematics.

7

There are many variants of CTT. In this paper we assume the variant implemented by
Cubical Agda where the Kan composition operations are decomposed into homogeneous
composition and generalized transport as described in [CHM18].
The main difference between the type theories in question lies in their definition of identity
or path types. Consequently, proofs for the basic theory of identity types can be quite
different in nature. However, once this initial set-up has been overcome and one moves
on to internalizing known mathematical structures, it would be preferable to be able to
use approximately the same style of reasoning across the different type theories.
For example, proving that general dependent paths are equivalent to non-dependent paths
between transported terms, depends crucially on the Kan operations of that cubical type
theory. Conversely, the standard algebraic proof that group actions are the same as split
monomorphisms in the category of groups should not require a lot of modification when
internalized in different type theories.
The structure identity principle (SIP) is the informal precept that isomorphic objects are
equal (cf. [CD13] and [Acz12]). A characterization of the identity types is desirable,
because it allows to reason about the structure in question while avoiding complex ar-
guments about abstract identity types in favour of a perhaps more familiar notion of
sameness.
For instance, the SIP for groups states that the type of isomorphisms between two arbitrary
groups is equivalent to the type of paths between them. Univalence can be considered to
be the SIP for types without additional structure.
It is natural to ask for which kinds of structure their identity principle is provable and to
what extent there is a general schema for obtaining such proofs. An up-to-date description
of a slight variation of the SIP for the standard notion of structure due to Escardó [Esc20]
and its implementation in Cubical Agda is given in [Ang+20].
In this thesis we present a more general way of constructing composite structures and
obtaining characterizations of their identity types along the way. The central notion is that
of a displayed univalent reflexive graph. We use it to formalize strict 2-groups and crossed
modules as structures on a group and prove the equivalence thereof. In addition to that,
we use displayed univalent reflexive graphs to define higher groups from the classifying
space perspective and prove that classifying spaces of 1-groups are equivalent to axiomatic
groups.
A complete introduction to univalent foundations and CTT is beyond the scope of this
thesis. The curious reader should consult the gentle introductions given in [Ort19] and

8

[Uni13]. Buchholtz [Buc19] offers a general and non-technical discussion of higher
structures. Some meta-mathematical and philosophical aspects of univalent foundations
are discussed by Awodey [Awo13] The technical details of CTT are presented in [Coh+18]
and [CHM18].

1.1 Overview

We give a short summary of the cubical setting of this thesis in Chapter 2. In doing that,
we fix notation for the rest of this work and recall results from cubical type theory to be
used later on.

Taking this foundation for granted, we investigate univalent reflexive graph structures (URG)
in Chapter 3. These made their first appearance as discrete reflexive graphs in [Rij19].
Motivated by the concept of displayed categories (cf. [AL19]), we define displayed univalent
reflexive graph structures (DURG). A DURG over a URG SA on a type A is equivalent to
‘a URG SB and a morphism of graphs F : SB → SA’, but with the data of the univalent
relation ofSB and the structure-preserving map F arranged as a family of univalent graphs
indexed by A via the fibrant replacement of F .

We illustrate how DURGs give rise to a system in which the data of composite structures
can be arranged in a uniform and modular way. They allow constructions on structures to
be done systematically using one’s favorite univalent relation instead of path or identity
types. Unlike displayed categories, they are not limited to 1-truncated objects. In general,
they serve as an abstraction which reduces redundancy and increases modularity in proofs.
As a consequence, the style of reasoning becomes more classical, and less specific to the
exact type theory the proof is formalized in. In that manner, we expect that the proofs
formulated within the framework of DURGs, as it is implemented in CTT, can easily be
carried over to HoTT.

Moving on to Chapter 4: Within the framework of DURGs, we define strict 2-groups and
crossed modules. Classically, a 2-group G is a group object in the category of groupoids.
Here, the category of groupoids can be seen as a (2,1)-category, or as an ordinary (1,1)-
category. If the latter is the case, then G is called a strict 2-group. A group object in the
category of groupoids is a groupoid G equipped with a product functor G ×G →G , which
satisfies evident unit and associativity laws; in general, these hold up to coherent natural
isomorphism. In a strict 2-group, however, they are proper equalities.

9

Identity types have structure themselves. For instance, they can be concatenated and
that operation is associative up to higher identifications. This is the slogan ‘types are
∞-groupoids’. It follows that pointed connected types may be viewed as higher groups.
We can impose a truncation requirement on a pointed connected type to obtain the notion
of an n-group.
There is no similar approach for strict n-groups. Hence, we internalize strict 2-groups as a
split monomorphism of groups that has an additional retraction combined with a vertical
composition operation.
A crossed module is a group action together with an equivariant homomorphism which ad-
ditionally satisfies the so-called Peiffer condition. It is well known [MM10] that classically,
the towers of structures that make up strict 2-groups and crossed modules are equivalent
on various levels. Actions are the same as split monomorphisms and precrossed modules
are the same as internal reflexive graphs in the category of groups. With the intermediate
step of Peiffer graphs, we shall finally see that crossed modules are equivalent to strict
2-groups. DURGs enable us to prove each equivalence of the next level by pulling back
the structure that level adds across the equivalence of the previous level while avoiding
identity types of objects.
Chapter 5 lays some foundations for the theory of higher groups in cubical type theory,
following [BDR18]. It can be read independently of Chapter 4. By requiring that a pointed
n-truncated type also be k-connected, one obtains better behaved higher groups, known
as k-tuply groupal n-groupoids or (n, k)-groups.
We transfer these ideas to cubical type theory, again, by means of DURGs. Pointedness,
connectivity and truncatedness can be added to a type simultaneously. This gives a simple
proof of the SIP for (n, k)-groups.
Our final result is that (0,1)-groups are equivalent to axiomatic groups. The SIP for
(0,1)-groups and the first Eilenberg-MacLane space are the main ingredients thereof.
Roughly, an Eilenberg-MacLane space is a certain higher inductive type of which a specified
homotopy group is isomorphic to a prescribed group. Following [LF14], we internalize
the construction of the first EM space of a group, taking advantage of the general schema
for higher inductive types that works in this CTT.
Chapter 6 is about the formalization1 of the results of the previous chapters in Cubical
Agda. We briefly discuss design choices and performance.
1https://github.com/Schippmunk/cubical/blob/thesis/Cubical/Papers/
HigherGroupsViaDURG.agda

10

https://github.com/Schippmunk/cubical/blob/thesis/Cubical/Papers/HigherGroupsViaDURG.agda
https://github.com/Schippmunk/cubical/blob/thesis/Cubical/Papers/HigherGroupsViaDURG.agda

In the last chapter we discuss our results, comparing DURGs to displayed categories and
the standard notion of structure. We point out potential, related future work.

1.2 Contributions

It was Buchholtz’ idea to define displayed univalent reflexive graphs in order compose
structures. The general theory of DURG structures is joint work.
The equivalence of strict 2-groups and crossed modules on the three levels presented is
well known (cf. [MM10]). This is the first time these objects have been internalized into a
cubical type theory and formalized in a proof assistant by means of displayed structures.
Note that von Raumer [Rau15] proved the equivalence of the precategories of crossed
modules (in Brown’s sense) and double groupoids in HoTT. However, it is not immediate
that that equivalence restricts to our case. A characterization of the identity types of the
objects in question is also not part of his exposition.
The equivalence between pointed connected 1-types and groups has already been formal-
ized in HoTT using the proof assistant Lean [BDR18]. The internalization here is novel in
that cubical higher inductive types do not require any postulated terms and that some
cubical arguments are simpler.

11

1.3 Acknowledgments

I am very grateful to Professor Thomas Streicher for supervising this project. Dr. Ulrik
Buchholtz deserves my sincere gratitude for his patience, guidance and positive spirit.
Working with you was a joy!
Moreover, I am thankful to Andrea Vezossi for giving me hints regarding performance
issues in Agda.
I very much appreciate the love and support I have received from my dear parents Ilona
and Helmut ever since, but especially during this last term of my studies.
Last but not least, I would like to thank my friends – in particular Anna, Lena, Sarah and
Nutsa – for their help and support.

12

2 Cubical Type Theory

This chapter introduces notation for dependent type theory with path types, together
with the minimal information needed to make sense of the Kan operations transport and
homogeneous composition, leading to a collection of cubical groupoid laws.
We remark that a lot of technicalities are skipped here, such as face formulas, partial
elements, glue types and proof of the correspondence between dependent paths and
identities of transported elements. This is because those details can be treated as a black
box. All of the proofs in the following chapters merely depend on the truth of these
properties, not what combination of Kan operations was used to derive them. This allows
us to keep the focus on intuitive cubical reasoning.
In Section 2.4, we recall function extensionality and univalence. The HoTT book gives a
good account of the meaning of these principles in type theory.
In the last two sections we collect facts and lemmas about truncated and connected types,
as well as the axiomatic treatment of groups in type theory. [Rij18] serves as a good
reference.

2.1 Dependent Type Theory

Dependent type theory à la Martin-Löf consists of types containing terms or inhabitants,
and judgemental or definitional equality, denoted ≡. Judgementally equal objects cannot
be distinguished by the type theory.
New types can be formed using dependent function types (x : A)→ B x , classically denoted
by
∏︁

x:A B(x) and called Π-types. There are also dependent pair types (x : A)× B x , called
Σ-types, which are traditionally denoted by

∑︁

x:A B(x). Our notation is close to that of the
programming language Agda, and we use it because the deeply nested dependent sum

13

types are more readable this way. Elements of Π- and Σ-types, that is, dependent functions
and dependent pairs, can be constructed using λ-abstraction and the pair constructor
〈_,_〉, respectively. For example,

(λ 〈a, b〉 ↦→ a) : (〈a, b〉 : (a : A)× B a)→ B a

is the judgement that the dependent function which takes a dependent pair 〈a, b〉 of type
(a : A)× B a and returns its second component is of the specified type.
As we saw in the pair constructor, we use underscores to indicate the position of the
arguments of special function symbols. When applying a function we often leave arguments
implicit. In a function definition these are sometimes denoted by curly braces. Functions
enjoy judgemental β-reduction and η-expansion, meaning that λ-abstraction computes
correctly, and every function is a λ-abstraction. Function application is denoted f x , rather
than f (x). We commonly overload symbols, often leaving components of a Σ-type implicit.
For example, G →Grp H denotes the type of homomorphisms between groups G and H,
while G→ H denotes the type of maps between the underlying types of G and H.
The type theory features a large class of inductive types. An inductive type consists of a
list of constructors, an induction principle and their computation rules; for instance, the
natural numbers form an inductive type N generated by 0N and the successor function
SN : N→ N. Let B : N→ Type be a type family over N. The induction principle of N is a
term

indN : (B 0N)→ ((n : N)→ (B n)→ B (SN n))→ (n : N)→ (B n).

It states exactly that to prove a statement about all natural numbers, one has to prove
it for 0N and provide a function that turns a p : B n into a term of type B (S n) for any
n : N. The computation rules state that indN computes correctly: indN p f 0N ≡ p and
indN p f (SNn)≡ f n (indN p f n).
To be able to quantify over types while avoiding inconsistencies like Russel’s paradox, the
type theory features type universes. As is common in the literature, we take the liberty of
only using one universe, called Type. The formalization can be consulted in order to see
the rigorous use of universes.

2.2 Path Types

In the homotopical interpretation a type A can be seen as a space, a term a : A as a
point of that space, a function f : A→ B as a continuous map, a path as a continuous

14

map [0,1]→ A from a to b and a type family B : A→ Type as a fibration. Based on this
intuition is the idea that cubes are the fundamental shapes used to capture the structure
of higher-dimensional mathematical objects.

The formal interval I

In cubical type theory, the real interval is abstracted to the formal interval type1 I with the
two endpoints i0 i1 : I.2 We assume a De Morgan algebra structure on I. This means that I
consists of countably many variable symbols and the minimum, maximum and inversion
operations ∧ : I→ I→ I, ∨ : I→ I→ I and ∼: I→ I such that I is a bounded distributive
lattice with De Morgan involution ∼.3 Note that we do not assume the law of excluded
middle (∼ i)∨ i = i1, nor its counterpart, the law of noncontradiction.

Given any two terms a b : A we can form the path type a = b in A. Paths are similar to
functions; given a path p : a = b and an interval variable i : I, we can judge that p i : A.
Applying a path to one of the interval endpoints results in the corresponding endpoint of
the path, i.e., there are judgemental equalities p i0 ≡ a and p i1 ≡ b. Paths are construted
by abstraction. If a : A is a term which may depend on i : I, then (λ i ↦→ a[i]) : a[i0] = a[i1].
As with functions, we assume judgemental β-reduction and η-expansion. That is, path
abstraction computes correctly, and every path is a path abstraction.

Cubes

A term parametrized by n variables of I can be seen as an n-dimensional cube and it is
often useful to visualize such objects diagrammatically. A 0-dimensional cube is just a
point, an element of A.

· a

A 1-dimensional cube p is a function I→ A. It can be visualized as a line in ‘direction’ i.

p i0 p i1
p i

i

1I is not formally a type, although it shares many properties of proper types. It is sometimes called a pretype.
2By not placing commas between multiple postulated terms of a type we stay close to Agda’s notation.
3In other cubical type theories I can have a different, usually weaker structure, see for example [AHH18].

15

A 2-dimensional cube p : I→ I→ A can be thought of as a homotopy of paths. Of course,
the corresponding picture is a square.

p i0 i1 p i1 i1

p

p i0 i0 p i1 i0

λ i ↦→p i i1

λ j ↦→p i0 j λ j ↦→p i1 j

λ i ↦→p i i0

The term p is also called a filler of the square. We note that the sides or faces of the square
are paths themselves, but of dimension 1. In the third dimension, paths are homotopies of
homotopies and can be visualized as cubes. The general pattern is clear. At dimension
n+ 1, there are (n+ 1)-dimensional paths visualizable as hypercubes with 2(n+ 1) faces
which are formed by n-dimensional cubes.

Dependent Paths

Since types are terms of a universe, this cubical structure applies to types as well. This
means there is a type A= B : Type of paths between any two types AB : Type. Every such
path p : A= B is a type line I→ Type with end points p i0 ≡ A and p i1 ≡ B. It thus makes
sense to assume a type of paths between specified terms which may belong to different
types.

PathP : (A : I → Type)→ A i0→ A i1→ Type

From this, the homogeneous path type can be derived.

_= _ : (A : Type)→ A→ A→ Type

a = b :≡ PathP (λ _ ↦→ A) a b

This is why heterogeneous equality PathP is taken to be the primitive equality type.

Example 2.1 (Paths in Σ-types). Let B : A→ Type be a type family over A : Type and
〈a, b〉 〈a′, b′〉 : (a : A)× B a. The data needed to construct a path 〈a, b〉= 〈a′, b′〉 is exactly
a path p : a = a together with a dependent path q : PathP (λ i ↦→ B(p i)) b b′.

16

Kan Operations

In the cubical setting we assume two Kan operations – transport and composition – to
ensure that there are enough paths and to determine how higher paths compute.

The general transport operation of this particular type theory is

transp : (A : I→ Type)→ (i : I)→ (a : A i0)→ A i1.

The parameter i specifies where transp is the identity function. It is taken as a primitive
in Cubical Agda. Normal transport can be defined in terms of transp.

transport : {AB : Type} → (A= B)→ A→ B

transport p a :≡ transp p i0 a

Homogeneous composition generalizes binary composition of paths. It states that any open
box specified by u and u0 has a lid p.

a b

c d

p

u u

u0

Here u is a partial element, roughly meaning it only needs to be defined on the left and
right side of the cube, and coincide with u0 where the two paths meet.

Using homogeneous composition, we can show that dependent paths can be obtained
from paths of transported terms and vice versa. How this works is explained in detail in
[CHM18, p.18].

Proposition 2.2. Let A : I→ Type be a line of types with elements a0 : A i0 and a1 : A i1 at
the end points. Then

(transport (λ i ↦→ Ai) x) = y)

≡ ((transp (λ i ↦→ Ai) i0 x) = y)

=PathP (λ i ↦→ Ai) a0 a1.

17

With this correspondence established, we can discard transp; transport suffices for our
purposes.
Note that in HoTT, a dependent path between a and b over p is usually defined to be a
path between a transported along p, and b, i.e., the left hand side in above equation.
It is sometimes convenient to have this cubical, more symmetric dependent path type –
particularly when dependent paths can be constructed directly (without using transport).
Of course, one could also construct dependent identity types as inductive types. Being
inductive, they would still be different from cubical dependent path types.

2.3 Cubical Groupoid Laws

We make more precise the intuition of types being∞-groupoids by establishing some
basic and useful groupoid laws.
For any type A and a : A we see that

refla :≡ (λ i ↦→ a) : (a = a).

In other words, we can use constant functions out of I to prove that = is reflexive. The a
is sometimes left implicit.
In HoTT, the approach is entirely different. Identity types in HoTT are inductive types
generated by a single constructor refl and thus they obey judgemental computation rules,
unlike the reflexivity term in CTT. This is one of the main reasons why the cubical style of
reasoning differs from the HoTT style.
It is true that transporting along refl is the identity function.

transportRefl : (a : A)→ transport refla a = a

transportRefl a :≡ λ i ↦→ transp (λ _ ↦→ A) i a

Substitution can be seen as a transport in an explicitly given type family.
subst : (B : A→ Type)→ (a = a′)→ B a→ B a′

substB p b :≡ transport (λ i ↦→ B(p i)) b

Since path types are not inductive, they do not automatically come with an induction
principle. However, identity induction (J) can be derived.

18

Proposition 2.3. Assume a type family P parametrized by a b : A and p : a = b. If P a a refla,
then P a b p holds for all p : a = b.

Functions preserve paths as the homotopy interpretation leads to expect. Let f : A→ B
and a b : A. Then the action of functions on paths is defined as

ap f : (a = b)→ (f a = f b)

ap f p :≡ λ i ↦→ f (p i)

It satisfies
ap f refla ≡ (λ i ↦→ f (refla i))≡ (λ i ↦→ f a)≡ refl f a.

Function application strictly respects composition in the sense that

apg◦ f p ≡ apg(ap f p).

This makes ap f a strict functor.

The De Morgan involution ∼ of I allows us to define path inversion directly. If p : a = b
then p−1 :≡ λ i ↦→ p(∼ i) : b = a. Note that there is a judgemental equality refl−1 ≡ refl.

The fundamental operation on paths is composition. The most natural definition of
homogeneous path composition is double composition. Given composable paths

a d

b c

p

q
r , (2.1)

we can use homogeneous composition to obtain a lid p ·· q ·· r : a = d of that open box:

a d

b c

p··q··r

q

p−1 r (2.2)

Any homogeneous composition comes with a filler. In the case of double composition, this
is a path of type

PathP (λ i ↦→ p−1 i = r i) q (p ·· q ·· r).

19

Double path composition, with the constraint that (2.2) can be filled, is unique up to a
path, in the sense that for any

P Q : (s : a = d)× PathP (λ i ↦→ p−1 i = r i) q s

we have that P =Q.
Closely related is the next lemma. It allows us to decompose fillers into double composition
identities.

Lemma 2.4. For any square
a d

b c

s

q

p−1 r

there is a path of type

(PathP (λ i ↦→ p−1 i = r i) q s) = (p ·· q ·· r = s).

Binary composition is defined as q · r :≡ refl ·· q ·· r. This binary composition operation is
what turns a type into a higher groupoid. One can prove all the usual unit, cancellation and
associativity laws up to a path. Of course, these paths are subject to higher coherences.
Luckily, it does not matter if we choose to use double composition or single composition
twice.

Lemma 2.5. For composable paths as in (2.1) there is a path of type

p ·· q ·· r = p · q · r.

The idea of the proof of Lemma 2.5 is to inflate the double composition with the necessary
reflexivity terms:

p ·· q ·· r = refl ·· (p ·· q ·· refl) ·· r

Afterwards one applies an instance of

refl ·· p ·· q = p ·· q ·· refl.

The details of the homogeneous compositions needed to construct these paths can be
found in the formalization.

20

Lemma 2.6. Assume that the bottom and top faces of the following cube have a filler.4

a b

a b

a b

a b

p′

p

q′

q

Then the type of fillers of the front face is the same as the type of fillers of the back face. In
other words,

(p = q) = (p′ = q′).

Proof. Let P :≡ p = p′ and Q :≡ q = q′. We can use the action of

(r : a = b)→ Type

r ↦→ r = q

on P to obtain an equality
(p = q) = (p′ = q).

Similarly, we then use the action of

λ r ↦→ p′ = r

on Q to obtain
(p′ = q) = (p′ = q′).

2.4 Functions, Equivalences and Univalence

In this section we introduce contractible types in order to define equivalences and isomor-
phisms. This leads us to function extensionality and univalence.
4Double lines are used to denote refl.

21

One of the most basic inductive types is the unit type 1. It has a single point constructor
∗ : 1.

A type A is called contractible or a (−2)-type, if there is a term 〈a, p〉 of type

(a : A)× ((b : A)→ a = b).

This is the type theoretic way of saying that A has only one point (up to homotopy). In
this example, a is called the center of the contraction p.

For example, the type 1 is contractible with center of contraction ∗. The contraction is
provided by the induction principle of 1. Contractible types are the simplest types from a
homotopical perspective. More examples of contractible types are singletons.

Proposition 2.7. For any type A and any term a : A, the singleton (a′ : A)× (a = a′) of A at
a is contractible.

Proof. We take the pair 〈a, refl〉 to be the center of contraction. Let 〈b, p〉 : (b : A)× (a = b).
To construct a path of type 〈a, refl〉= 〈b, p〉 it suffices to find a q : a = b and a filler of the
square:

a b

a a

p

q

We take q :≡ p. Then λ i j ↦→ p(i ∧ j) fills the square.

Definition 2.8. Let f : A→ B be a function. The (homotopy) fiber of f at b : B is the type

fib f b :≡ (a : A)× (f a = b).

The map f is called an equivalence or contractible map if its fibers are contractible. In that
case we write f : A≃ B. The map f is called an isomorphism, if it has a quasi-inverse, that
is, a map g : B→ A and proofs that (a : A)→ g (f a) = a and (b : B)→ f (g b) = b.

One can show that a map is contractible iff it has a quasi-inverse. We often construct an
isomorphism and then state that the corresponding types are equivalent.

22

Proposition 2.9. Let p : A= B. Then

transport p : A→ B

is an equivalence.

Its pseudo-inverse is given by transporting along p−1. This is one of the propositions we
treat as a black-box. Its proof requires more details about partial elements, so we refer to
the implementation.
We shall often use [Uni13, Theorem 4.7.7].

Theorem 2.10. Let B B′ : A→ Type and f : (a : A) → B a → B′ a. Then f is a fiberwise
equivalence iff

tot f : (a : A)× B a→ (a : A)× B′ a

〈a, b〉 ↦→ 〈a, f a〉

is an equivalence.

Proposition 2.11. Let f : A≃ A′ and g : (a : A)→ B a ≃ B′ (f a). Then

(a : A)× B a ≃ (a′ : A′)× B′ a′.

Proof. According to Theorem 2.10, g induces an equivalence

(a : A)× B a ≃ (a : A)× B′(f a)

on total spaces. One can show that a pseudo-inverse of f induces a pseudo-inverse of

(a : A)× B′(f a)→ (a′ : A′)× B′ a′

〈a, b〉 ↦→ 〈 f a, b〉.

Definition 2.12. Two functions f g : A→ B are called homotopic, if they are pointwise
equal. In other words, if

f ∼ g :≡ (a : A)→ (f a = g a)

is inhabited.

One of the prominent features of CTT is function extensionality.

23

Theorem 2.13. Let f g : A→ B. Then there is a pseudo-isomorphism
(f ∼ g)≃ (f = g)

H ↦→ (λ i a ↦→ H a i)

(λ a i ↦→ p i a)← [p.

Function extensionality refers to the map from left to right; such a map cannot be derived
in HoTT. The statement of Theorem 2.13 can be generalized to dependent functions
(a : A)→ B a.
Since types A : Type are also terms, they have identity types as well.

Theorem 2.14. Univalence holds, i.e., for any two types A and B the natural map
idToEquiv : (A= B)→ (A≃ B)

defined by identity induction is an equivalence. Call its inverse idToEquiv−1. These maps
satisfy

transport (idToEquiv−1 f) x = f x (idToEquiv-β)
and

idToEquiv−1(idToEquiv P) = P (idToEquiv-η)
for all f : A≃ B, a : A and P : A= B.

The proof can be found in [Coh+18].
With univalence we can generalize function extensionality.

Lemma 2.15. Assume that we have two functions and an equivalence arranged as follows:

B B′

A A′

f f ′

e
∼

If there is p : B = B′ and a path of type
(a : A)→ PathP (λ i ↦→ p i) (f a) (f ′(e a)),

then there is a path of type
PathP (λ i ↦→ idToEquiv−1 e i→ p i) f f ′.

24

2.5 Truncated and Connected Types

A type A is called a (mere) proposition or (−1)-type, if all of its identity types are contractible.
An equivalent condition is that for all a b : A there is a path a = b. The type A is called a
set or 0-type if its identity types are propositions. Continuing in this fashion, A is called an
(n+ 1)-type or an (n+ 1)-truncated type, if all of its identity types are n-types. Intuitively,
an n-type can contain non-trivial homotopical information only up to level n. We introduce

Type≤n :≡ (A : Type)× isTruncn A,

the type of n-types. We adhere to the common abuse of notation of writing A : Type≤n to
state that A is an n-type, leaving the second component implicit.

Lemma 2.16. Let B : A→ Type≤−2 be a family of contractible types over the type A. Then

(a : A)× B a ≃ A.

In particular, the identity types of (a : A)× B a are equivalent to those of A.

Lemma 2.17. Let A be a contractible type with center of contraction c. Let B : A→ Type be
a type family over A. Then

(a : A)× B a ≃ B c.

Lemma 2.18. Let B : I → Type≤−1 be a ‘line of propositions’. Then there is a term of type

PathP (λ i ↦→ B i) b0 b1

for all b0 : B i0 and b1 : B i1.

Proof. Since B i1 is a proposition, there is a path (transport B b0) = b1. Proposition 2.2
turns it into the desired dependent path.

A propositional family P : A→ Type≤−1 can be seen as a subtype of A, because (a : A)× P a
are the terms of A which satisfy P. The following lemma establishes that the identity types
of a type restrict to its subtypes. It follows directly from the characterization of paths in
Σ-types, and Lemma 2.18.

25

Lemma 2.19. Let B : A→ Type≤−1 be a subtype of A. Then for all 〈a, b〉 〈a′, b′〉 : (a : A)×B a,

(〈a, b〉= 〈a′, b′〉)≃ (a = a′).

Using dependent paths we can express truncatedness of type families.

Definition 2.20. Let B : A→ Type be a type family. We say that B is a (−1)-type over A, if
for all a a′ : A there is a term of type

(p : a = a′)→ (b : B a)→ (b′ : B a′)→ PathP (λ i ↦→ B(p i)) b b′.

The family B is said to be a (−2)-type over A, if every fiber is inhabited and it is in addition
a proposition over A. B is said to be an (n+ 1)-type over A, if for all a a′ : A, and b and b′

in the fibers over a and a′, respectively, the family

λ p ↦→ PathP (λ i ↦→ B(p i)) b b′

is an n-type over A.

In view of Lemma 2.18 it is possible to show that every family B : A→ Type≤n is also an
n-type over A.
Path induction can be used to show that any identity type of A is homotopically not more
complex than the self identity type a = a of any a : A.

Proposition 2.21. Let n ≥ −1 and A : Type. If a = a is an n-type for all a : A, then A is an
(n+ 1)-type.

The next two propositions are well-known (cf. [Uni13, Theorems 7.1.8 and 7.1.10]).

Proposition 2.22. The type Type≤n is closed under taking Σ-types.

In particular, subtypes of sets are sets.

Proposition 2.23. Being truncated is a property. In other words, the type isTruncn A is a
proposition.

Proposition 2.24. If B is an n-type and A is any type, then the type of functions A→ B is
an n-type.

26

This uses function extensionality and is proved by induction on n. We see that universally
quantified statements about equalities in sets are propositions.

Theorem 2.25. For any type A and n≥ −2 there is a type ∥A∥n : Type≤n, the n-truncation of
A, together with a map |_|n : A→ ∥A∥n satisfying the universal property that for any n–type
B the precomposition map

λ g ↦→ g ◦ |_|n : (∥A∥n→ B)→ (A→ B)

is an equivalence.

The n-truncation of A can be seen as the ‘best approximation’ of A as an n-type. The
truncation can be defined via the hub and spoke construction, or as a higher inductive
type. For a reference of the former, see [Uni13, Section 7.3]. The definition as a HIT is
simple and beautiful. For example, the propositional truncation ∥A∥−1 of A is generated
by the constructors

|_|−1 : A→ ∥A∥−1

and
squash : (a b : A)→ a = b.

Dual to n-truncated types, there are types which do not have any non-trivial homotopical
information below level n.

Definition 2.26. A type A is n-connected, if its n-truncation ∥A∥n is contractible. We collect
the connected types in

Type>n :≡ (A : Type)× isConnn A.

A map f : A→ B between any two types A and B is called n-connected if all of its fibers are
n-connected.

Lemma 2.27. For any A : Type>n+1, any map of type 1→ X is n-connected.

27

2.6 Groups

The axiomatic definition a group in CTT is the same as in HoTT. Namely, a group consists
of a set with a specified unit element, a binary composition operation which has inverses,
such that the evident unit, cancellation and associativity laws hold. The nested Σ-type of
types with this structure and these properties is called Grp. A homomorphism of groups is
a function on the underlying types that respects the addition operation. We collect the
group homomorphisms between G H : Grp in G→Grp H. If the underlying map of a group
homomorphism f is an equivalence, then f is called an isomorphism of groups and we
write f : G ≃Grp H.
As an immediate consequence of Proposition 2.22 and Proposition 2.24, we see that maps
between groups are homotopically not more complex than groups themselves.

Proposition 2.28. The types G→ H, G→Grp H and G ≃Grp H are sets for any two groups
G and H.

Proposition 2.29. Any homomorphism f : G→Grp H induces a group structure ker f , called
the kernel of f , on the type

(g : G)× f g = 1.

This comes with a forgetful, injective homomorphism

λ 〈g, p〉 ↦→ g : ker f →Grp G.

The next proposition is an extensionality principle for the type of groups. It characterizes
the paths between homomorphisms of groups.

Proposition 2.30. For all f g : G→Grp H there is an equivalence

(f ∼ g)≃ (f = g).5

Proof. Function extensionality states that f ∼ g is equivalent to the paths between the
underlying maps of f and g. Since being a homomorphism is a property, the statement
follows from Lemma 2.19 and the functorial action of the projection to the first component
of a homomorphism.
5Here f ∼ g means homotopies of the underlying functions of f and g, and f = g is the identity type in

G→Grp H.

28

We state the SIP for groups.

Theorem 2.31. Let G and H be groups. Then there is an equivalence
(G ≃Grp H)≃ (G = H).

A proof can be found in [Rij18, Section 14].
We give two more definitions relevant for Chapter 4. The definition of a split monomor-
phism works in any category. We are only concerned with the special case of the category
of groups.

Definition 2.32. Given two homomorphisms f : G→Grp H and g : H →Grp G, we say that
〈 f , g〉 is a section-retraction-pair, if it satisfies the split condition

isSecRet〈 f , g〉 :≡ g ◦Grp f = idGrp
H .

If isSecRet〈 f , g〉 is inhabited, we say that f is a split monomorphism, g a split epimorphism,
g a retraction of f and f a section of g.

Definition 2.33. Let G and H be groups. A group action of G on H consists of a left action
structure _α_ : G→ H → H satisfying the following axioms for all g : G and hh′ : H.

g α (hh′) = (g α h)(g α h′) (pointwise homomorphism)
1α h= h (identity law)

(g g ′)α h= g α (g ′ α h) (associativity)

We call the Σ-type collecting these axioms isActionα.

Since we are only interested in split monomorphisms in the category of groups and actions
of groups on groups, we no longer qualify these with the word ‘group’.
It is easy to see that isSecRet〈 f , g〉 and isActionα are propositions.

Proposition 2.34. An action α of G on H gives rise to a new group – the semidirect product
H ⋊α G – with carrier type H × G and group operation

〈h, g〉 ·α 〈h′, g ′〉 :≡ 〈h(g α h′), g g ′〉.

For more information on semidirect products, see [DF04, Section 5.5].

29

3 Displayed Structures

This chapter is concerned with the process of ‘displaying’ some structure over another. In
the first section we shall give a thorough motivation and explanation as to how this works.
The second section contains a summary of the relevant aspects of displayed categories
as introduced by Ahrens and Lumsdaine in [AL19]. In the third and fourth sections we
define URGs and DURGs, respectively. The fifth section is devoted to general operations
such as forming total spaces and lifting DURG structures. The chapter concludes with a
theorem about obtaining equivalences between DURG structures using an equivalence of
the base types.

3.1 Motivation

Many mathematical structures are composite ones. Starting with some base structure one
can sequentially add properties and (higher) structure.
For example, groups can be constructed by starting with a base type, adding a multipli-
cation and inversion structure, and finally group axioms – associativity, unit and inverse
laws.
For constructing new categories by adding extra data to objects or morphisms of an
existing category, there exists the framework of displayed categories.
‘A displayed category over a category C is equivalent to “a category D and a functor
F : D →C ”, but instead of having a single collection of “objects of D”, with a map to the
objects of C , the objects are given as a family indexed by objects of C , and similarly for
the morphisms.’
This is analogous to how a family of sets indexed by a set C is equivalent to a set D with
a function to C . To emphasize the analogy, one could call a family of sets over a set a
displayed set.

31

While category theorists might not like this perspective, we can consider a category to
be a type with some extra structure. The choice of morphisms might depend on the
context. For example, on the collection of sets, taking morphisms to be either functions
or set inclusions yields distinct category structures. Both structures can be used to prove
theorems about sets, but the resulting theorems usually depend on the chosen structure.
One can distinguish different purposes of adding structure to mathematical objects. In the
examples above, the category structures were chosen to highlight a particular aspect of
the nature of the collection of sets. In contrast to that, one could argue that equipping
a set with a particular group structure usually serves the purpose of understanding the
group structure itself, or how the resulting group behaves with respect to other groups –
not what the nature of the elements of the underlying set is like.
The obvious analogue to displayed sets in type theory, a displayed type over a type C ,
would be a type indexed by the terms of C; in other words, a type family over C . This
data is equivalent to that of a type X together with a function X → C . The transformation
of this data is known as fibrant replacement.

Proposition 3.1. For any type C there is an equivalence

(X : Type)× (X → C)≃ (C → Type)

〈X , F〉 ↦→ (λ c ↦→ fibF c)

〈(c : C)× D c,π1〉 ← [D

A univalent reflexive graph (URG) is a type A together with a binary relation, a witness
that the relation is reflexive, and a witness that the relation is equivalent to the identity
types of A (see Definition 3.5). We see that a URG is a type combined with a representation
of its intrinsic structure – its identity types.1

It is evident that a displayed univalent reflexive graph (DURG) (see Definition 3.13) over a
URG on a type A should be a type family B : A→ Type with a reflexive relation ∼=D

p indexed
by proofs p : a ∼= a′ in A. This relation should be univalent at any chosen reflexivity proof
ρ : a ∼= a in A. We remark that no reference to the identity types of A is necessary.
In the internalization of mathematics into type theory a common task is to characterize
the identity types of the newly defined type. Common challenges faced during this process
are that identity types of composite structures quickly become very complex and that it is
1Reflexive graphs in HoTT first received attention by Egbert Rijke and Bas Spitters in [Rij19]. They were
used to develop the theory of reflexive coequalizers.

32

hard to repeat such characterizations in a structured way. Additionally, for a successful
implementation in a proof assistant it is vital that code can be reused.

We shall see how DURGs can live up to these challenges. One fundamental observation is
that a DURG structure on a type family induces a URG structure – and hence a characteri-
zation of identity types – on the total space (see Theorem 3.16). Furthermore, we show
that two DURG structures over the same type can be combined (see Corollary 3.21) and
that one of them can be lifted to be displayed over the other (cf. Proposition 3.20). These
operations greatly reduce redundancy.

Now, let us recall the basics of displayed categories and explore the details of DURGs.

3.2 Displayed Categories

Definition 3.2. Given a category C , a displayed category D over C consists of

1. for each object c :C , a type Dc of ‘objects over c’;

2. for each morphism f : a→ b of C , x : Da and y : Db, a set of ‘morphisms from x to
y over f ’, denoted x → f y;

3. for each c :C and x : Dc, a morphism 1x : x →1c
x;

4. for all morphisms f : a→ b and g : b→ c in C and objects x : Da and y : Db and
z : Dc, a sequential composition function

· : (x → f y)× (y →g z)→ (x → f ·g z);

5. such that the following dependent properties over equalities of morphisms in C are
satisfied for all f̄ : x → f y, ḡ : y →g z and h̄ : z→h w.

a) f̄ · 1y =∗ f̄

b) 1x · f̄ =∗ f̄

c) f̄ · (ḡ · h̄) =∗ (f̄ · ḡ) · h̄

33

The asterisks in the axioms indicate dependent equalities over equalities of morphisms in
C . For instance, if f̄ : x → f y, then f̄ · 1y : x → f ·1b

y, so the displayed right unit axiom is
over the ordinary axiom f · 1b = f of C .
To every displayed category D over C there is an associated total category

∫︁

C D. It is a
category on the total space (c :C)×Dc of objects of D over C . This comes with an evident
forgetful functor π1 :

∫︁

C D →C .
A category is called univalent, if the natural map idtoiso : (x = y)→ iso(a, b) is an equiva-
lence. A displayed category D over C is called univalent, if the displayed isomorphisms
characterize the displayed identity types over idtoiso in C .
One particularly useful theorem states that univalence of a total category follows from
the univalence of the displayed category.

Theorem 3.3. If D is a displayed univalent category over a univalent category C , then the
total category
∫︁

C D is univalent.

3.3 Univalent Reflexive Graphs

Definition 3.4. A graph structure or binary relation on a type A is a function _∼= _ : A→
A→ Type. The type of graphs is

(A : Type)× (A→ A→ Type)

If there is a term ρ : (a : A)→ a ∼= a, then ∼= is called a reflexive graph structure.

Here we use the symmetric symbol ∼=, because we are only interested in univalent and
hence symmetric graphs.
The relation given by identity types on a type is the least reflexive relation on that type.
This allows us to define a map

idToRel : (a a′ : A)→ (a = a′)→ a ∼= a.

idToRel a a′ p :≡ subst (λ z ↦→ a ∼= z) p (ρ a)

for any a reflexive graph structure 〈∼=,ρ〉.2
2We equivalently could have used J rather than subst.

34

Definition 3.5. The reflexive graph structure 〈∼=,ρ〉 is called univalent, if idToRel a a′ is
an equivalence for any a a′ : A.

The type of univalent reflexive graph structures on A is the expected Σ-type. We drop the A
subscript when the relation ∼= and its reflexivity and univalence witnesses are clear from
the context.

Example 3.6. Group isomorphisms, together with the identitity morphisms form a reflex-
ive relation on the type Grp of groups. By the SIP for groups, this relation is univalent.
Hence, we have a URG structure SGrp on Grp.

Example 3.7. Every univalent 1-precategory naturally induces a univalent reflexive graph
structure on its base type.

To employ some more examples of DURG structures we can use a reformulation of [Rij18,
Theorem 10.2.3].

Proposition 3.8. Let ∼=: A→ A→ Type≤−1 be a reflexive relation. If ∼= ‘implies identity’ –
meaning there is f : (a ∼= b)→ (a = b) – then all ∼=-singletons are contractible.

Proof. Let a : A. Since ∼= takes values in propositions, the map idToRel is a left inverse to
f . Consequently, the total function of f is a left inverse to the total function of idToRel. In
other words, (a′ : A)× a ∼= a′ is a retract of (a′ : A)× a = a′, a contractible type. Hence,
the former type is also contractible.

Example 3.9. We previously noted that a URG structure on a type can be understood as
an observational equality. We elaborate on this by defining an observational equality on
the natural numbers, and showing that it satisfies the axioms of a URG. We define the
following relation on N:

EqN : N→ N→Type≤−1

EqN 00 :≡1

EqN 0 (suc n) :≡∅
EqN (suc n)0 :≡∅

EqN (suc n) (suc m) :≡EqN n m

35

Clearly, EqN takes values in Type≤−1, is reflexive and implies identity. According to
Proposition 3.8, it follows that the relational singletons (m : N)× EqN n m are contractible.
Hence, EqN defines a URG structure on the natural numbers.

At least when dealing with types that are not sets, showing that the map idToRel is an
equivalence becomes difficult. A slight variant of the fundamental theorem of identity
types (cf. [Rij18, Theorem 9.2.2], [Uni13, Theorem 5.8.4]) is often useful to show that a
reflexive graph is univalent.

Theorem 3.10. For any reflexive graph structure 〈∼=,ρ〉 on A, the following statements are
equivalent.

• 〈∼=,ρ〉 is univalent.

• Every relational singleton w.r.t. ∼= is contractible. In other words, for every a : A, the
type

singl
∼=
a ≡ (a

′ : A)× a ∼= a′

is contractible.

Proof. In the context of a : A, we define the total function of idToRel:

totidToRel
a : (a′ : A)× a = a′→ (a′ : A)× a ∼= a′

〈a′, p〉 ↦→ 〈a′, idToRel a a′ p〉

If 〈∼=,ρ〉 is univalent, then totidToRel is an equivalence (Theorem 2.10). The singleton
(a′ : A)× a = a′ is contractible, and so is (a′ : A)× a ∼= a′.

Conversely, assume all ∼= singletons are contractible. Let a : A. Then both the domain
and codomain of totidToRel

a are contractible. It follows that totidToRel
a is an equivalence. By

Theorem 2.10, if the total function totidToRel
a is an equivalence, then idToRel a is a fiberwise

equivalence. This is a reformulation of the univalence of 〈∼=,ρ〉.

Example 3.11. Theorem 3.10 provides us with many more examples of URG structures.

1. Every type has a natural URG structure given by its identity types.

36

2. Every universe Type has a URG structure. The binary relation ≃ is given by equiva-
lences. Identity equivalences witness reflexivity of ≃. Univalence of ≃ is equivalent
to Type being a univalent universe.3

The univalence axiom of URG structures implies of course that up to homotopy there is
exactly one small URG structure on any given type.

Proposition 3.12. For any A : Type, the type of small URG structures on A is contractible.

Proof. Let S :≡ 〈∼=,ρ, uni〉 be any URG structure on A and S′ :≡ 〈=, (λ a ↦→ refla), uni′〉
be the one given by identity types. To construct a path S′ = S of a three-component
structure we have to come up with three paths – one for each component – with the
latter paths depending on the previous ones. A path p between the relations = and ∼= is
determined by function extensionality and uni. We now construct a term

q : PathP (λ i ↦→ (a : A)→ p i a a) (λ a ↦→ refla)ρ.

Let a : A and put

u : (a = a)≃ (a ∼= a)

u :≡ 〈idToRel a a, uni〉.

We have that

transport (λ i ↦→ p i aa) refla
= subst (λ a′ ↦→ a ∼= a′) refla (ρ a) (idToEquiv–β)
= refla. (transportRefl)

Proposition 2.2 turns this path of a transported term into a parametrized dependent path
of type

PathP (λ i ↦→ p i a a) refla (ρ a).

Function extensionality applied to that path yields q. The univalence axiom of URG
structures is a proposition, hence Lemma 2.18 produces a dependent path between uni
and uni′ over p and q.
3Actually, in the cubical library, contractibility of the ≃-singletons is used to prove univalence, because it
follows from unglue being an equivalence.

37

3.4 Displayed Univalent Reflexive Graphs

Definition 3.13. Let SA :≡ 〈∼=,ρ, uni〉 be a URG structure on A, and B : A→ Type be a
type family over A. A displayed univalent graph structure on B over SA consists of

• a relation, called displayed relation, over the relation ∼= of SA, that is, a term

_∼=D
_ _ : {a a′ : A} → B a→ a ∼= a′→ B a′→ Type

• a witness of reflexivity relative to ρ:

ρD : {a : A} → (b : B a)→ b ∼=D
ρ a b

• and a witness of univalence relative to ρD and ρ,

uniD : {a : A} → isUnivalent (λ b b′ ↦→ b ∼=D
ρ a b′)ρD.

Since a displayed relation already carries a subscript of the kind p : a ∼= a, we usually drop
the _D superscript.

We remark that the fundamental theorem of identity types is equally useful for the
construction of DURGs as for URGs. This is because it proves that to give a term uniD as in
Definition 3.13 is to show that for all a : A and every b : B a the relational singleton

(b′ : B a)× b ∼=D
ρ a b′

is contractible.

As a first example, we see that subtypes can be given a simple DURG structure. This is
reminiscent of [AL19, Example 3.6]. It aids in imposing axioms on a given structure.

Proposition 3.14. Let P : A→ Type≤−1 be a propositional family, and SA :≡ 〈∼=,ρ, uni〉 be
a URG structure on the type A. Then there is a DURG structure on P over SA with displayed
relation

p ∼=q p′ :≡ 1.

38

Proof. Reflexivity over SA is witnessed by ∗. In view of Theorem 3.10 it now suffices to
show that for any a : A and b : P a the ∼=ρ a-singleton

(b′ : P a)× b ∼=ρ a b′

is contractible. By definition, this is just

(b′ : P a)× 1. (3.1)

The unit type is contractible, so we can further reduce (3.1) to P a. By assumption, P a is
a proposition and inhabited by b : P a. Consequently, P a is contractible. Note that we did
not use univalence of SA.

The types isConnk A and isTruncn A are propositions. Whence, Proposition 3.14 yields a
DURG structure.

Example 3.15. Connectedness and truncatedness can be displayed over universes, i.e.,
for any n k : N there are DURG structures on the type families

λ (A : Type) ↦→ isConnk A

and
λ (A : Type) ↦→ isTruncn A.

3.5 Operations on Displayed Univalent Reflexive Graphs

As promised, we can form a ‘total URG structure’ for any displayed URG structure – a
univalent reflexive graph structure on the total space of the type family. This is the
analogue of Theorem 3.3.

Theorem 3.16. Let DB
A be a DURG over SA. Then there is an associated total URG structure

of DB
A, written
∫︁

DB
A, on the type (a : A)× B a with the binary relation being

〈a, b〉 ∼=Σ 〈a′, b′〉 :≡ (e : a ∼= a′)× b ∼=e b′.

39

Proof. The relation ∼=Σ is reflexive by

λ 〈a, b〉 ↦→ 〈ρ a,ρD b〉.

To show that ∼=Σ is univalent, it suffices to show (Theorem 3.10) that all ∼=Σ-singletons
are contractible. Let 〈a, b〉 : (a : A)× B a. Then

(〈a′, b′〉 : (a : A)× B a)× (e : a ∼= a′)× b ∼=e b′

≃(〈a′, e〉 : (a′ : A)× a ∼= a′)× (b′ : Ba′)× b ∼=e b′

≃(b′ : B a)× b ∼=ρ a b′.

In the first step we reassociated and swapped independent Σ-types. In the second step
we used contractibility of the relational singleton of SA at a. Thus, we are left with the
∼=ρ a-singleton at b, which is also contractible by assumption.
One subtlety is that the center of contraction Theorem 3.10 does in general not coincide
with 〈a,ρ a〉. Hence, to apply the assumption of contractibility of ∼=ρ a, the contraction of
the relational singleton of SA at a needs to be recentered.

It is worth noting that
∫︁

DB
A is in particular a characterization of the identity types of

(a : A)× B a.
We use the sketch

B

A

to illustrate a DURG structure on a type family B over A. The arrow pointing down is
justified by the first projection (a : A)× B a→ A.
As a corollary to the total space construction we obtain products of URG structures by
constructing constant DURG structures.

Corollary 3.17. Let SA and SB be URG structures on types A and B, respectively. Then there
is a DURG structure DB

A on the constant family λ _ ↦→ B over A. The displayed relation is
given by

b ∼=p b′ :≡ b ∼= b′,

for p : a ∼= a′. Reflexivity and univalence of the new relation follow immediately from SB.

40

Definition 3.18. Let SA and SB be URG structures on A and B, and DB
A the constant

DURG structure as in Corollary 3.17. We define the product URG structure

SA×S SB :≡
∫︂

DB
A.

The corresponding sketch to Corollary 3.17 and Definition 3.18 is:

A B ↦→
B

A

↦→ A× B

The next important operation is that of reassociating towers of DURG structures.

Theorem 3.19. Let SA be a URG structure on A, DB
A a DURG structure on B : A→ Type over

SA, and DC
B a DURG structure on C : ((a : A)×B a)→ Type over

∫︁

DB
A. Then there is a DURG

structure DD
A on the type family

D :≡ λ a ↦→ (b : B a)× C〈a, b〉

over SA.

We have this picture in mind:4

C

B

A

↦→
B × C

A

4We draw our towers to associate to the bottom. A diagram C → A× B would indicate a URG structure on
(a : A)× B a which has not necessarily been obtained form Theorem 3.16. Moreover, note that C depends
on B even if the notation B × C might suggest otherwise. This is to stay consistent with the naming
convention in the next chapter. In our applications it is always obvious whether or not the right factor
depends on the left.

41

Proof. We define the displayed relation of DD
A to be

〈b, c〉 ∼=pa
〈b′, c′〉 :≡ (pb : b ∼=pa

b′)× c ∼=〈pa ,pb〉 c′

for any pa : a ∼= a in A. Reflexivity over 〈b, c〉 is witnessed by 〈ρD b,ρDc〉. As per usual, we
apply Theorem 3.10 to reduce univalence of the displayed relation to contractibility of all
relational singletons. Let a : A, and 〈b, c〉 : (b : B a)× C〈a, b〉. We need to prove that

(〈b′, c′〉 : (b′ : B a)× C〈a, b′〉)× (pb : b ∼=ρ a b′)× c ∼=〈ρ a,pb〉 c′

is contractible. Swapping and reassociating factors appropriately, we obtain the equivalent
type

(〈b′, pb〉 : (b′ : B a)× b ∼=ρ a b′)× (c′ : C〈a, b′〉)× c ∼=〈ρ a,pb〉 c′. (3.2)
From the univalence assumption on URG structures, and Theorem 3.10, it follows that

(b′ : B a)× b ∼=ρ a b′

is contractible. We may use our favourite center of contraction 〈b,ρD b〉. This proves that
(3.2) is equivalent to

(c′ : C〈a, b〉)× c ∼=〈ρ a,ρD b〉 c′.

This is the relational singleton of DC
B at c, hence contractible.

A useful operation to reduce redundancy in defining DURG structures is the following
lifting operation.

Proposition 3.20. Let SA be a URG structure on A, DB
A and DC

A be DURG structures over SA.
Then B can be lifted to be displayed over

∫︁

DC
A .

B C

A

↦→

B

C

A

42

Proof. The new type family B′ : (a : A)× C a → Type ignores the C-component, and so
does its DURG structure. The displayed relation is given by

b ∼=pa ,pc
b′ :≡ b ∼=pa

b′.

Of course, reflexivity and univalence follow immediately from the same properties of
DB

A.

We can combine the lifting and the reassociating of DURG structures to obtain the combi-
nator: If two structures can be displayed over a type, then so can their product.

Corollary 3.21. Let SA be a URG structure on A, and DB
A and DC

A be DURG structures over
SA. Then there is a DURG structure over SA on the family

λ (a : A) ↦→ B a× C a.

B C

A

↦→
B × C

A

Proof. First, lift DB
A to be displayed over

∫︁

DC
A . Then apply Theorem 3.19 to the resulting

tower.

3.6 Constructing Equivalences Using Displayed Univalent Reflex-
ive Graphs

In this section we set up some tools which can be used in order to obtain equivalences
between composite structures.

Definition 3.22. Between two graphs 〈A,∼=〉 and 〈A′,∼=′〉, a relational isomorphism consists
of functions

A A′
f

g

such that g(f a) ∼= a and f (g a′) ∼=′ a′ for all a : A and a′ : A′. We denote the Σ-type of
relational isomorphisms by RelIso〈A,∼=〉〈A′,∼=′〉.

43

One could define an isomorphism of URG structures as an isomorphism of the underlying
relation that also preserves the reflexivity and univalence witesses, as well as morphisms of
URG structures by dropping the left and right inverse axioms. However, the next proposition
shows that an isomorphism of the underlying graphs suffices to induce an equivalence on
the underlying types. Morphisms of URG structures are not of interest here.

Proposition 3.23. Let f : SA→ SB be a relational isomorphism between the underlying
graphs of URG structures SA and SB. Then A and B are equivalent.

Proof. We show that the relational inverse f −1 of f is also an inverse in the ordinary
sense. Let a : A. We need to prove that f −1(f a) = a. By assumption that f is a relational
isomorphism we have a p : f −1(f a) ∼= a. The relation ∼= on A is univalent, so there is a
map U : f −1(f a)∼= a→ f −1(f a) = a. Clearly, U p : f −1(f a) = a. A symmetric argument
proves that f −1 is also a right inverse.

Assume now that there are types and maps as follows:

Type Type

A A′
B B′

f

(3.3)

We may consider the type family B′ to be defined over A, by precomposing with f , i.e., we
define

f ∗B′ :≡ λ a ↦→ B′(f a).

To construct an equivalence of the types (a : A)× B a and (a : A)× f ∗B a, it suffices to give
a fiberwise equivalence

g : (a : A)→ (B a)≃ (f ∗B a).

If f is an equivalence, then f and g together induce an equivalence

(a : A)× B a ≃ (a′ : A′)× B′ a (3.4)

between the original total types. Compared to constructing an equivalence as in (3.4)
directly, the advantage of this method is that we merely need to set up tools for proving
that maps are inverse to each other in type families over A. This concept, of course,
transfers to DURG structures (Theorem 3.25).

44

Definition 3.24. Let f : A→ A′ be a function, SA and SA′ URG structures on A and A′,
and DB

A, and DB′
A′ be DURG structures over SA and SA′ , respectively. A fiberwise relational

isomorphism of DB
A and DB′

A′ over f is a function of type

(a : A)→ RelIso 〈B a,∼=ρ a〉 〈 f ∗B′ a,∼=′ρ(f a)〉.

Here ∼= and ∼=′ are the displayed relations of DB
A and DB′

A′ respectively.

Note that f ∗B′ a priori does not carry a DURG structure over SA; it is merely a type family
with a binary relation on every fiber. Direct application of univalence of the relation of
DB′

A′ suffices to make the total equivalence work.

Theorem 3.25. Let f ,SA,SA′ ,D
B
A and DB′

A′ be as in Definition 3.24. Assume furthermore
that f is an equivalence, and that there is a fiberwise relational isomorphism between DB

A

and DB′
A′ over f . Then the total spaces (a : A)× B a and (a′ : A′)× B′ a′ are equivalent.

We visualize the input to Theorem 3.25 via this diagram:

B B′

A A′∼

The dashed arrow indicates that B′ is pulled back along the equivalence, but not viewed
as a displayed URG over SA.

Proof. In the same way as in the proof of Proposition 3.23, we get an equivalence B a ≃
f ∗B′ a for every a : A. We can apply Proposition 2.11 to bundle up f and the fiberwise
equivalence to get an equivalence of the desired type.

Consider the special case where A≡ A′ and SA ≡SA′ . Then we take f to be the identity
equivalence on A, and no pullback is necessary. Note that Proposition 3.23 can be seen as
a special case of Theorem 3.25 when A≡ 1≡ A′.
Alternatively, consider the case where B and B′ are propositional families. Then, to
construct a fiberwise relational isomorphism between DB

A and DB′
A′ over f , it suffices to

give fiberwise functions
(a : A)→ B a→ B′(f a)

45

and
(a : A)→ B′(f a)→ B a.

If DB
A and DB′

A′ were constructed using Proposition 3.14 this reduces the type-checking
time,5 since the displayed relation on either side is given by 1, rather than an arbitrary
contractible type, allowing to choose ∗ for the center of contraction every time.

5Agda’s abstract keyword nullifies this advantage; see Chapter 6.

46

4 Equivalence of Strict 2-Groups and
Crossed Modules

The first two sections of this chapter introduce strict 2-groups and crossed modules. In
the three subsequent sections DURG structures are used to show the equivalence between
group actions and split monomorphisms, precrossed modules and internal reflexive graphs
in the category of groups, crossed modules and Peiffer reflexive graphs, and Peiffer reflexive
graphs and strict 2-groups.

4.1 Strict 2-Groups

In the introduction we stated that a 2-group is a group object in the category of groupoids.
Such a group object consists of a groupoid G together with morphisms of groupoids as
follows.

∗ G G ×G1

−1

· (4.1)

dc A groupoid can be seen as an ordinary category in which every morphism is an
isomorphism. From that point of view, morphisms of groupoids are functors. These
functors also have to satisfy the obvious inverse, unit and associativity laws.

We may prepend the word ‘strict’ to this definition and obtain the more rigid strict 2-groups
– internal groups in the 1-category of groupoids with the functors in (4.1) satisfying the
coherence laws up to equality, not just natural isomorphism.

47

We would like to work with an alternative, equivalent definition of strict 2-groups, namely
that of internal categories in the category of groups. Such an internal category consists of
groups G0 and G1, together with group homomorphisms arranged as follows:

G1 ×G0
G1 G1 G0

◦
σ

ι

τ

Here the pullback G1 ×G0
G1 is the limit of the cospan σ : G1 → G0 ← G1 : τ.1 The mor-

phisms σ, τ, ι and ◦ are the source, target, identity-assigning and composition morphisms,
respectively. They are subject to the coherence laws expressed as commutativity of the
following diagrams.

• The source and target of identity morphisms are as expected.
G0 G1

G0

ι

1
σ

G0 G1

G0

ι

1
τ

• The source and target of composite morphisms behave as expected.
G1 ×G0

G1 G1

G1 G0

◦

π2 σ

σ

G1 ×G0
G1 G1

G1 G0

◦

π1 τ

τ

• Composition is associative.

G1 ×G0
G1 ×G0

G1 G1 ×G0
G1

G1 ×G0
G1 G0

〈1,◦〉

〈◦,1〉 ◦

◦

• Composition satisfies left and right unit laws.

G0 ×G0
G1 G1 ×G0

G1 G1 ×G0
G0

G1

〈ι,1〉

π2
◦

〈1,ι〉

π1

1This way, ◦ composes like function composition, not sequential composition.

48

In what way are internal groups in the category of groupoids and internal categories in the
category of groups equivalent? G0 corresponds to the objects of G , G1 to the morphisms of
G . The composition operation ◦ on G1 ×G0

G1 corresponds to the composition of arrows in
the morphisms of G . The group operation of G0 is represented by the map · on the object
level; that of G1 by the map · on the morphism level. The correspondence between the
remaining structure should be clear.

Example 4.1. Every group G gives a strict 2-group. We take G0 :≡ G and G1 to be the
minimal set of morphisms, namely only identity morphisms for all objects of G.

A third perspective unites the previous approaches. A strict 2-group can be seen as a very
special 2-category, namely a connected, strict 2-groupoid on one object. The groups G0
and G1 are then the 1, and 2-arrows, respectively.
As for all 2-categories, computations in a strict 2-group can be drawn using pasting
diagrams. In such a diagram we use ∗ to resemble the generic point, ‘→’ for 1-arrows or
elements of G0 and ‘⇒’ for 2-arrows.
Let us visualize the homomorphism property of ◦. Suppose we have composable a c : G1
and b d : G1. We can first form the products a ·1 b and c ·1 d in G1. These will again be
composable, becacuse σ and τ are homomorphisms. The pasting diagram of (c ·1 d)◦(a ·1 b)
is:

∗ ∗ ∗

∗ ∗ ∗

f g
◦

f g

a b

c d

(4.2)

The map ◦ being a homomorphism means exactly that (4.2) is equal to first composing
using ◦ and then forming the product in G1. The corresponding picture is:

∗ ∗ ∗ ∗
f ·1

g
a

c

b

d

49

Because of this convention, ◦ is often called vertical composition, the group operation of G1
horizontal composition and the homomorphism property of ◦ interchange law.

4.2 Crossed Modules

Definition 4.2. A crossed module consists of groups G and H, a homomorphism ϕ : H → G
and an action α : G ×H → H such that the diagrams

G ×H H

G × G G

α

idG ×ϕ ϕ

Ad

H ×H

G ×H H

Adϕ×idH

α

commute. Here Ad denotes the adjoint action. Commutativitiy of the first diagram
translates to G-equivariance of ϕ, i.e.,

ϕ(g α h) = g(ϕ h)g−1.

The second diagram signifies that the action α has to satisfy the so-called Peiffer identity

(ϕ h)α h′ = hh′h−1

for all h, h′ ∈ H.

We remark that the group H can act on itself in two different ways. One is the usual
conjugation action h · h′ :≡ hh′h−1; the second one is by mapping h down to G and then
using the action α of G on H. The Peiffer rule states that these two actions coincide.
Another way to interpret the Peiffer identity is to rewrite it to

hh′ = ((ϕ h)α h′)h.

Then it looks like a ‘twisted commutativity law’ for H. Indeed, if H is any abelian group,
then there is a unique crossed module structure on G :≡ {e} and H.

Example 4.3. Every group G gives a crossed module

G {e}
!

!
.

50

We use the dashed arrow to indicate an action. The exclamation marks express that
there is only one possible choice for the object at hand: the trivial action and the trivial
homomorphism, respectively.
More generally, if H is any normal subgroup of G, then the inclusion homomorphism
H ˓→ G together with the conjugation action Ad give a crossed module

G H
Ad

.

In that sense, crossed modules generalize normal subgroups.

Crossed modules encode strict 2-groups in terms of two ordinary groups together with
additional structure and properties. A crossed module defines a strict 2-group via the right
inclusion2 and projection of the semidirect product:

G0 H G0 H ⋊α G0

α

ϕ

π2

ι2

τϕ

Conversely, a strict 2-group produces an action of G0 on the group of 2-arrows with source
the neutral element of G1:

G0 G1 kerσ G0 G1

σ

ι

τ

Adι2

τ◦Grpι
′

ι′
σ

ι

τ

The rest of the chapter is devoted to proving that these maps actually define an equivalence
of types.

4.3 Group Actions and Split Monomorphisms

In this section we establish the equivalence between actions and split monomorphisms.
With the SIP for groups already proved, we can take the URG structureSGrp for the bottom
2The reason we draw the second projection on the left is the following: G0 stays constant when going back
and forth along the equivalence of strict 2-groups, so it has to be at the bottom of the algebraic hierarchy.
Hence, the two groups involved appear as 〈G0, G1〉, not the other way around. Consequently, ι is directed
forwards, and σ and τ backwards.

51

level. By the URG product ×S, this gives rise to a URG structure on the type of pairs of
groups. On top of pairs of groups, there are two towers. One adds a left action structure
(LAS) followed by the axioms turning it into an action. The other successively adds a
morphism forth (F) and back (B), and afterwards the split condition.

isAction isSecRet

LAS F×B

Grp

Grp

Groups

We define
SGrp2 :≡ SGrp ×S SGrp,

the product URG structure on the type of pairs of groups.

Proposition 4.4. Over SGrp2 we can display:

1. homomorphisms in the forth direction, i.e., there is a DURG structure DF
Grp2 on the type

family
λ 〈G, H〉 ↦→ G→Grp H;

2. homomorphisms in the back direction, i.e., there is a DURG structure DB
Grp2 on the type

family
λ 〈G, H〉 ↦→ H →Grp G;

3. and pairs of homomorphisms back and forth, i.e., there is a DURG structure DF×B
Grp2 on

the type family
λ 〈G, H〉 ↦→ (G→Grp H)× (H →Grp G).

52

Proof. 1. The displayed relation assumes a context of groups and homomorphisms
arranged as follows:

G H

G′ H ′

f

p ∼ q∼

f ′

Here p and q are group isomorphisms. We define the displayed relation of f and f ′

over 〈p, q〉 to be commutativity of the above diagram. Explicitly,

f ∼=〈p,q〉 f ′ :≡ (g : G)→ q(f g) = f ′(p g). (4.3)

Next, we need to show that (4.3) is reflexive w.r.t. the reflexivity term of the URG
structure on pairs of groups. That reflexivity term is simply the pair 〈idGrp

G , idGrp
H 〉

of identity homomorphisms. Hence, given f : G→Grp H and g : G, condition (4.3)
becomes f g = f g. This is solved by refl.
By Theorem 3.10, contractibility of all relational singletons of the relation (4.3)
implies its univalence. Let f : G→Grp H be given. We need to prove that

(f ′ : G→Grp H)× f ∼=〈idGrp
G ,idGrp

H 〉
f ′ (4.4)

is contractible. Extensionality for homomorphisms (Proposition 2.30) implies that
that (4.4) is equivalent to

(f ′ : G→Grp H)× (f = f ′),

which is the singleton at f . The claim follows because singletons are contractible
and equivalences preserve truncation levels.

2. The situation is entirely symmetric to that of the previous case, so we omit an explicit
proof.

3. By the above, we have morphisms forth and back displayed over pairs of groups.
We apply Corollary 3.21 to combine DF

Grp2 and DB
Grp2 . This gives a DURG structure

DF×B
Grp2 on

λ 〈G, H〉 ↦→ (G→Grp H)× (H →Grp G).

It should be noted that in general any DURG structure over SA ×S SA gives rise to a
symmetric one by transporting along the swap equivalence. However, this cannot be used

53

to obtain the second case from the first one in Proposition 4.4 without further adjustments,
because we allow the two factors, both called Grp, to live in different universes.

We call the URG structure on the total space consisting of pairs of homomorphisms forth
and back

SGrp2×F×B :≡
∫︂

DF×B
Grp2 .

Lemma 4.5. The split condition can be displayed over SGrp2×F×B, i.e., there is a DURG
structure DisSecRet

Grp2×F×B
on the type family

λ 〈〈G0, G1〉, ι,σ〉 ↦→ isSecRet〈ι,σ〉.3

Proof. The type isSecRet〈ι,σ〉 is a proposition. Hence, Proposition 3.14 immediately
produces the desired DURG structure.

Taking the total space produces a URG structure

SSplitMono :≡
∫︂

DisSecRet
Grp2×F×B

on the Σ-type SplitMono consisting of tuples 〈〈G0, G1〉, ι,σ〉 such that isSecRet〈ι,σ〉.

Actions

To display actions over pairs of groups we first add a left action structure and in a second
step the action axioms.

Lemma 4.6. Left action structures can be displayed over pairs of groups, i.e., there is a DURG
structure DLAS

Grp2 on the type family

λ 〈G, H〉 ↦→ G→ H → H.

3When forming new type families over an existing nested Σ-type, we keep track of how the elements are
associated, because sometimes the families need to be reassociated later on.

54

Proof. This proof is similar to that of Proposition 4.4. The displayed relation assumes
(after uncurrying) a context of (underlying types of) groups G and H, maps α and β , and
equivalences p and q, as arranged in this diagram:

G ×H H

G′ ×H ′ H ′

α

〈p,q〉 ∼ q∼

β

The displayed relation of α and β is defined to be commutativity of the above diagram.
Explicitly,

α∼=〈p,q〉 β :≡ (g : G)→ (h : H)→ q(g α h) = (p g) β (q h).

Reflexivity is immediate and two applications of function extensionality transform the
relational singleton at α to the ordinary singleton at α.

We give the name

SGrp2×LAS :≡
∫︂

DLAS
Grp2

to the resulting URG structure on the type of pairs of groups with a left action structure.

Lemma 4.7. The action axioms can be displayed over SGrp2×LAS, i.e., there is a DURG
structure DisAction

Grp2×LAS
on the type family

λ 〈〈G, H〉,α〉 ↦→ isActionα.

Proof. The type isActionα is a proposition. Proposition 3.14 produces the desired DURG
structure.

Equivalence

If α is an action of G0 on H, a split monomorphism can be obtained by constructing the
semidirect product with respect to α and showing that its second projection has a section.

55

Conversely, a section-retraction-pair ι : G0↔ H : σ induces a conjugation action of G0 on
kerσ by precomposing with ι.

G0 H G0 H ⋊α G0

G0 G1 kerσ G0 G1

α Proposition 4.8 π2

ι2

σ

ι

Adι

Proposition 4.9 σ

ι

Proposition 4.8. Let 〈G0, H,α, isAct〉4 be an action of G0 on H. Then the second inclusion
and projection of the semidirect product H ⋊α G0 form a section-retraction-pair.

Proof. The second projection is the homomorphism

π2 : (H ⋊α G0)→Grp G0,

π2 = 〈λ 〈h, g〉 ↦→ g,λ 〈h, g〉 〈h′, g ′〉 ↦→ reflg g ′〉

and the second inclusion is the obvious homomorphism ι2 : G0 →Grp H ⋊α G0. The
homomorphism ι2 consists of the map λ g ↦→ 〈1, g〉 and a term witnessing that

〈1, g g ′〉= 〈1(g α1), g g ′〉

for any g g ′ : G0.
It is clear that π2 ◦ ι2 ∼ idG0

. Proposition 2.30 about group morphism extensionality yields
a path

π2 ◦Grp ι2 = idGrp
G0

.

Proposition 4.9. Let 〈G0, G1, ι,σ, splitσι 〉 be a split monomorphism with retraction σ. Then
G0 acts on ker σ by conjugation after ι.

Proof. We define the left action structure of G0 on kerσ by

g α 〈h, p〉= 〈(ι g)h(ι g−1), q〉
4To keep the amount of parentheses manageable, the ordering of pairs is suppressed when we prove a
lemma about a composite Σ-type.

56

Here q is a proof that σ((ι g)h(ι g−1)) = 1. The term q can be constructed using the group
axioms, homomorphism properties of σ, ι, and p : σh= 1.

We prove that α satisfies the action axioms.

1. Let g : G0. We show that λ h ↦→ (g α h) is a homomorphism. By Lemma 2.19 it
suffices to show that

(ι g)hh′(ιg−1) = (ι g)h(ι g−1)(ι g)h′(ιg−1),

whenever there are p and p′ such that 〈h, p〉 and 〈h′, p′〉 are terms in kerσ. This,
however, amounts to no more than a sequence of applications of associativity and
cancellation in H, so we skip the details.

2. Again, Lemma 2.19 reduces the identity axiom for actions to showing that for any
〈h, p〉 : kerσ the identity

(1α 〈h, p〉)1 = h

holds. This is done using that homomorphisms preserve the identity, together with
a sequence of cancellations and identity laws in G1.

3. By the same argument we skip this simple proof of associativity of α.

As we see, the group G0 remains constant when going back and forth. This suggests to
apply Theorem 3.19 twice to DisAction

Grp2×LAS
to obtain D

Grp×LAS× isAction
Grp – a DURG structure on

the type family

λ (G0 : Grp) ↦→ (H : Grp)× (α : G0→ H → H)× isActionα.

In the same fashion we obtain a DURG structure D
Grp×(F×B)×isSecRet
Grp on

λ (G0 : Grp) ↦→ (G1 : Grp)× (〈ι,σ〉 : (G0→Grp G1)× (G1→Grp G0))× isSecRet〈ι,σ〉.

Lemma 4.10. There is a fiberwise relational isomorphism between D
Grp×LAS× isAction
Grp and

D
Grp×(F×B)×isSecRet
Grp over the type of groups.

Proof. Fix a group G0. We show that the maps constructed in Proposition 4.8 and Proposi-
tion 4.9 are relationally inverse to each other.

57

Claim: Let 〈H,α, isAct〉 be an action of G0 on H. Then there is ϕ : kerπ2 ≃Grp H such that

G0 × kerσ kerπ2

G0 ×H H

Adι2

〈id,ϕ〉 ϕ

α

commutes.

The map ϕ extracts the H-component of kerπ2, that is

ϕ〈〈h, g〉, p〉 :≡ h.

Consider the function
ψ :≡ λ (h : H) ↦→ 〈〈h, 1〉, refl〉.

We prove that ψ is a pseudo-inverse of ϕ. Clearly, ϕ ◦ψ∼ idH . To see that ψ is also a left
inverse to ϕ, let 〈〈h, g〉, p〉 : kerπ2. It is necessary to construct a path of type

〈〈h, 0〉, refl〉= 〈〈h, g〉, p〉.

This can be done component-wise. Reflexivity provides a path for the first component,
and a path over refl is just an ordinary path. Hence, we use p−1 : 1 = g for the second
component. Being an element of the kernel is a proposition, so we can apply Lemma 2.18
to obtain a path for the last component over 〈refl, p−1〉.
To see that ϕ is a homomorphism, let 〈〈h, g〉, p〉 and 〈〈h, g〉, p〉 be in kerπ2. The desired
path of type

h(g α h′) = hh′

can be constructed by first reducing g to 1 using p, and then applying the identity axiom
for actions.
Commutativity of the square is equivalent to pure existence of a path

q : 1(g α h) = (g g ′)α (g−1 α 1−1)

for every g : G0 and 〈〈h, g ′〉, p〉 : kerσ. Such a term q can be constructed using multiple
applications of identity laws for groups, as well as the homomorphism axiom for actions.
This finishes the proof of the first claim.

58

Claim: Conversely, let 〈G1, ι,σ, splitσι 〉 be a split monomorphism with domain G0. There
is an isomorphism of groups ϕ such that both diagrams

kerσ⋊Adι G0 G0

G1 G0

π2

ϕ id

σ

G0 kerσ⋊Adι G0

G0 G1

ι2

id ϕ

ι

commute.

We define the map
ϕ 〈〈h, g〉, p〉 :≡ h ι g.

A pseudo-inverse of ϕ is given by

ψ :≡ λ h ↦→ 〈〈h ι(σh−1)), p〉,σh〉.

Here, p is any proof that σ(h ι(σh−1)) = 1. It can be easily verified that ψ actually
is a pseudo-inverse. This crucially uses splitσι . We refer the doubtful reader to the
formalization.

To prove that the above square commutes is to give paths

g = σ(h ι g),

and
1 ι g = ι g,

for all g : G0 and 〈h, p〉 : kerσ. Since p : σh= 1, this is obvious.

This finishes the proof of the second claim.

Theorem 4.11. There is an equivalence

Action≃ SplitMono .

Proof. Lemma 4.10 and Theorem 3.25 establish an equivalence between the types in
question up to associating the Σ-types, and associating Σ-types is an equivalence.

59

4.4 Precrossed Modules and Internal Reflexive Graphs

A precrossed module consists of an action with an additional morphism (in the back
direction), which is equivariant w.r.t. that action. An internal reflexive graph is a split
monomorphism together with a second retraction. We construct an equivalence of the
types of these structures by pulling back along the equivalence between actions and split
monomorphisms from the previous section. Pictorially, we are in this situation:

isEquivariant isSecRet

B B× isEquivariant B× isSecRet B

Action SplitMono∼

Precrossed Modules

Lemma 4.12. Group homomorphisms can be displayed over actions, i.e., there is a DURG
structure DB

Action on the type family

λ 〈〈〈G0, H〉,α〉, isAct〉 ↦→ H →Grp G0

over Action.

Proof. We apply the lifting operation from Proposition 3.20 once to DB
Grp2 , to obtain

DB
Grp2×LAS

. We apply it again and have DB
Action.

We define the URG structure

SAction×B :≡
∫︂

DB
Action

on the Σ-type Action×B with components an action and an additional homomorphism.

60

Definition 4.13. Let 〈G0, H,α, isAct,ϕ〉 : Action×B be an action with a homomorphism
ϕ : H →Grp G0. We say that ϕ is equivariant w.r.t. α, if there is a term of type

isEquivariant〈α,ϕ〉 :≡ (g : G0)→ (h : H)→ ϕ(g α h) = g(ϕ h)g−1.

We define the type of precrossed modules to be

PreXModule :≡ (〈〈〈〈G0, H〉,α〉, isAct〉,ϕ〉 : Action×B)× isEquivariant〈α,ϕ〉.

The type isEquivariant〈α,ϕ〉 is a proposition, because H is a set. Hence, the family of
equivariance proofs over Action×B carries a DURG structure D

isEquivariant
Action×B . As usual, we

take the total space
SPreXModule :≡

∫︂

D
isEquivariant
Action×B .

Internal Reflexive Graphs in the Category of Groups

Lemma 4.14. Morphisms in the back direction can be displayed over split monomorphisms,
i.e., there is a DURG structure DB

SplitMono on the type family

λ (〈〈〈G0, G1〉, 〈ι,σ〉〉, splitσι 〉 : SplitMono) ↦→ G1→Grp G0.

Proof. We lift (Proposition 3.20) the structure DB
Grp2 once to obtain DB

Grp2×F×B
. We lift it

again and have DB
SplitMono.

This yields a URG structure

SSplitMono×B :≡
∫︂

DB
SplitMono

on the type

SplitMono×B :≡ (〈〈〈G0, G1〉, 〈ι,σ〉〉, splitσι 〉 : SplitMono)× G1→Grp G0.

Lemma 4.15. The split condition can be displayed over SSplitMono×B. In other words, there
is a DURG structure DisSecRet

SplitMono×B on

λ (〈〈〈〈G0, G1〉, 〈ι,σ〉〉, splitσι 〉,τ〉) ↦→ isSecRet〈ι,τ〉.

61

Proof. Note that here we cannot simply use the lifting operation from Proposition 3.20
on isSecRet, because of the additional components and different composition of Σ-types.
However, isSecRet〈ι,τ〉 is still a proposition, so Proposition 3.14 yields the desired DURG
structure.

Finally, we have a URG structure
∫︂

DisSecRet
SplitMono×B

on the type

IntReflGraph :≡ (〈〈〈〈G0, G1〉, 〈ι,σ〉〉, splitσι 〉,τ〉 : SplitMono×B)× isSecRet〈ι,τ〉.

Equivalence

In this section, let F denote the isomorphism of Action and SplitMono constructed in
Theorem 4.11.

We apply Theorem 3.19 to D
isEquivariant
Action×B , the DURG structure of equivariance proofs over

Action×B, to obtain a DURG structure D
B× isEquivariant
Action on the family

λ 〈〈〈G0, H〉,α〉, isAct〉 ↦→ (ϕ : H →Grp G0)× isEquivariant〈α,ϕ〉.

Similarly, from DisSecRet
SplitMono×B we obtain a DURG structure DB× isSecRet

SplitMono on the family

λ 〈〈〈G0, G1〉, 〈ι,σ〉〉, splitσι 〉 ↦→ (τ : G1→Grp G0)× isSecRet〈ι,τ〉.

We want to construct a fiberwise relational isomorphism of DB× isEquivariant
Action and DB× isSecRet

SplitMono
over F . Hence, fix an action 〈G0, H,α, isAct〉 and its corresponding split monomorphism
〈G0, H ⋊α G0, ι2,π2, splitπ2

ι2
〉. The maps transforming the equivariant homomorphism into

62

the second retraction and vice versa are illustrated in the following diagram:

G0 H G0 H ⋊α G0

G0 H ⋊α G0 kerπ1 G0 H ⋊α G0

α

ϕ

Lemma 4.16
π2

ι2

τϕ

π2

ι2

τ

Adι2

τ◦Grpι1

ι1 Lemma 4.17
π2

ι2

τ

Lemma 4.16. Let ϕ : H →Grp G0 be an α-equivariant homomorphism. Then

τϕ : H ⋊α G0→ G0

〈h, g〉 ↦→ (ϕ h)g

defines a retraction of ι2.

Proof. The map τϕ is a homomorphism, because

(ϕ(h(g α h′)))g g ′ = (ϕ h)(ϕ(g α h′))g g ′ = (ϕ h)g(ϕ h′)g−1 g g ′ = (ϕ h)g(ϕ h′)g ′

holds for all 〈h, g〉 〈h′, g ′〉 : H ⋊α G0. This uses the homomorphism property and equivari-
ance of ϕ. By Proposition 2.30, proving that τϕ is split amounts to verifying that

(ϕ 1)g = g.

Lemma 4.17. Let τ : H ⋊α G0→Grp G0 be a retraction of ι2. Then there is an α-equivariant
homomorphism ϕ : H →Grp G0.

Proof. We define
ϕ :≡ τ ◦Grp ι1.

63

We briefly show α-equivariance. Let g : G0 and h : H. Then
ϕ(g α h)≡ τ〈g α h, 1〉

= τ〈1(g α h)((g1)α 1), g1g−1〉

= τ(〈1, g〉 ·α 〈h, 1〉 ·α 〈1, g−1〉)

= τ〈1, g〉τ〈h, 1〉τ〈1, g−1〉
= τ(ι2 g)τ(ι1 h)τ(ι2 g)

= g(ϕ h)g−1.

Lemma 4.18. There is a fiberwise relational isomorphism between D
B× isEquivariant
Action and

DB× isSecRet
SplitMono over F .

Proof. For the first direction, let ϕ : H →Grp G0 be an α-equivariant homomorphism. We
need to verify that τϕ ◦ ι1 ∼ ϕ.
Unfolding the definitions, we find that the round-trip function τϕ ◦ ι1 acts as

(τ ◦ ι1)h≡ (ϕ h)1.

Conversely, let τ be another retraction of ι2. We claim that τ is homotopic to its round-trip
version

τϕ ≡ λ 〈h, g〉 ↦→ τ〈h, 1〉g.

It is easy to see that
τ〈h, 1〉g = τ〈h, 1〉τ〈1, g〉

= τ〈h(1α 1), 1g〉
= τ〈h, g〉.

Since the split property and equivariance condition are propositions, these two claims
imply the result.

Theorem 4.19. There is an equivalence
PreXModule≃ IntReflGraph .

Proof. By Theorem 3.25, the fiberwise relational isomorphism of Lemma 4.18 induces
an isomorphism of the underlying total spaces. Up to reassociating Σ-types, these total
spaces are PreXModule and IntReflGraph, respectively.

64

4.5 Crossed Modules and Peiffer Graphs

This secion establishes the equivalence of the type of crossed modules and that of Peiffer
graphs. Peiffer graphs were first defined in [MM10] in the context of a semiabelian
category. Mantovani and Metere also proved that in good semiabelian categories, such as
the category of groups, the Peiffer condition is sufficient to identify the crossed modules
among the precrossed modules.

In one picture, the current setting is:

PFXM PFG

PreXModule IntReflGraph∼

Here PFXM and PFG denote the Peiffer condition for crossed modules and internal reflexive
graphs, respectively. As the word ‘condition’ suggests, being Peiffer is a mere proposi-
tion. This makes it easy to construct DURG structures and hence a fiberwise relational
isomorphism over the equivalence from the previous section.

Crossed Modules

Definition 4.20. A crossed module is a precrossed module 〈G0, H,α, isAct,ϕ, isEqui〉 which
additionally satisfies the Peiffer condition for precrossed modules

isPeiffer〈α,ϕ〉 :≡ (hh′ : H)→ (ϕ h)α h′ = hh′h−1. (PFXM)

Here, H is the object of the action α. We define the type of crossed modules

XModule :≡ (〈〈〈〈〈G0, H〉,α〉, isAct〉,ϕ〉, isEqui〉)× isPeiffer〈α,ϕ〉.

Being a universally quantified statement about an equality in a group, (PFXM) is a
proposition and can therefore be displayed over precrossed modules. Hence, we have an
evident DURG DPFXM

PreXModule.

65

Peiffer Graphs

Definition 4.21. Let 〈G0, G1, ι,σ, splitσι ,τ, splitτι 〉 be an internal reflexive graph. The Peiffer
condition for internal reflexive graphs is

(a b : G1)→ (ι(σ b)) a (ι(σ a−1))(ι(σ b−1)) b (ι(τ a)) = b a. (PFG)

Let us visualize the Peiffer condition in terms of modified5 pasting diagrams. After bringing
ι(σ b) and ι(τ a) to the other side of the equation, the left-hand side is:

∗ ∗ ∗ ∗ ∗

σ a

τ a

ι(σ a−1) ι(σ b−1)

σ a

τ b

a b

The right-hand side is:

∗ ∗ ∗ ∗ ∗
ι(σ b−1)

σ b

τ b

σ a

τ a

ι(τ a−1)
b a

Of course, (PFG) is also a mere proposition. This gives rise to a DURG DPFG
IntReflGraph. Taking

its total space
∫︂

DPFG
IntReflGraph,

we have characterized the identity types of the type PeifferGraph.

Equivalence

In this subsection, let χ :≡ 〈G0, H,α, isAct,ϕ, isEqui〉 be a precrossed module and G :≡
〈G0, H ⋊α G0, ι2,π2, splitπ2

ι2
,τ, split

τϕ
ι2
〉 the corresponding internal reflexive graph.

Lemma 4.22. Assume χ satisfies (PFXM). Then G satisfies (PFG).
5The modification is that identity arrows ιg : G1 are drawn as ‘⇒’ (and their inverses as ‘⇐’), rather than
vertical double arrows.

66

Proof. Let a b : H ⋊α G0 with a ≡ 〈h, g〉 and b ≡ 〈h′, g ′〉. We have to show that

ι2(π2 b) ·α a ·α ι2(τϕ a−1) ·α ι2(π2 b−1) ·α ι2(τϕ a) = b ·α a. (4.5)

We compute the identities

ι2(π2 b) = 〈1, g ′〉

ι2(π2 b−1) = 〈1, g ′−1〉
ι2(τϕ a) = 〈1, (ϕ h)g〉.

Using these identities and simplifying, we see that

ι2(π2 b) ·α a ·α ι2(τϕ a−1) ·α ι2(π2 b−1) ·α ι2(τϕ a) = 〈(g ′ α h)((g ′(ϕ h−1)g ′−1)α h′), g ′g〉.

In the first component we apply equivariance of ϕ and see that

(g ′ α h)((g ′(ϕ h−1)g ′−1)α h′) = (g ′ α h)((ϕ(g ′ α h−1))α h′).

We now use the Peiffer identity (PFXM) and obtain

(g ′ α h)((ϕ(g ′ α h−1))α h′) = (g ′ α h)(g ′ α h−1)h′(g ′ α h−1)−1 = h′(g ′ α h).

On the other hand, 〈h′(g ′ α h), g ′g〉 ≡ b ·α a. Concatenating these identities gives a proof
of (4.5).

Lemma 4.23. Assume that G satisfies (PFG). Then χ satisfies (PFXM).

Proof. Let hh′ : H. We want to prove that

(ϕ h)α h′ = hh′h−1. (4.6)

We apply (PFG) to 〈h−1, 1〉 and 〈h′, 1〉 and get

ι2(π2〈h′, 1〉)〈h−1, 1〉 ι2(τϕ 〈h−1, 1〉−1) ι2(π2 〈h′, 1〉
−1)〈h′, 1〉 ι2(τϕ〈h−1, 1〉) = 〈h′, 1〉·α〈h−1, 1〉.

(4.7)
Clearly,

ι2(π2〈h′, 1〉) = 〈1,1〉

and
ι2(τϕ〈h−1, 1〉) = 〈1,ϕ h−1〉.

67

Accordingly, (4.7) implies

〈h−1, 1〉 ·α 〈1,ϕ h〉 ·α 〈h′, 1〉 ·α 〈1,ϕ h−1〉= 〈h′, 1〉 ·α 〈h−1, 1〉.

Carrying out the multiplication on both sides and simplifying further, leaves us with

〈h−1((ϕ h)α h′), 1〉= 〈h′h−1, 1〉. (4.8)

Projecting to the first component, and multiplying h on the left shows that (4.6) follows
from (4.8).

Theorem 4.24. There is a fiberwise relational isomorphism between the DURGs DPFXM
PreXModule

and DPFG
IntReflGraph. Hence, there is an equivalence

XModule≃ PeifferGraph .

Proof. Since both Peiffer conditions are propositions, it suffices to show that they are
logically equivalent. This is done in the previous two lemmas.

4.6 Peiffer Graphs and Strict 2-Groups

A strict 2-group is an internal reflexive graph together with a vertical composition operation.
Thus, we compare the Peiffer condition to the type of vertical composition operations that
can be defined on an internal reflexive graph.

PFG VertComp

IntReflGraph IntReflGraphid

In that spirit, let us fix an internal reflexive graph

G :≡ 〈G0, G1, ι,σ, splitσι ,τ, splitτι 〉

throughout the entire section.

68

Vertical Compositions

Definition 4.25. We say that two arrows b a : G1 are composable, if σ b = τ a. If
p : isComposable b a, we call 〈b, a, p〉 a composable triple.
The type of vertical compositions V on G is the Σ-type consisting of the following compo-
nents:

1. A composition operation

_ ◦_ _ : (b a : G1)→ isComposable b a→ G1

(where the order of the last two arguments of ◦ is swapped, i.e., we write b ◦p a, for
p : isComposable b a);

2. witnesses that σ and τ respect ◦, i.e., for every composable triple 〈b, a, p〉 terms of
type σ(b ◦p a) = σ a and τ(b ◦p a) = τ b;

3. a proof that ◦ is a homomorphism, i.e., for all composable triples 〈b, a, p〉 and
〈b′, a′, p′〉, and every ep : isComposable (bb′) (aa′), a term of type

(bb′) ◦
ep (aa′) = (b ◦p a)(b′ ◦p′ a′);

4. a witness of associativity, i.e., a term of type

(c b a : G1)

(pc
b : isComposable c b)

(pb
a : isComposable b a)

(pc
ba : isComposable c (b ◦pb

a
a))

(pcb
a : isComposable (c ◦pc

b
b) a)

→c ◦pc
ba
(b ◦pb

a
a) = (c ◦pc

b
b) ◦pcb

a
a;

5. left and right unit laws, that is, terms of type

(a : G1)→ (p : isComposable (ι(τ a)) a)→ ι(τ a) ◦p a = a

and
(b : G1)→ (p : isComposable b (ι(σ b))→ b ◦p ι(σ b) = b.

69

The alert reader will have noticed that some of the parameters in the above types are
superfluous. If 〈b, a, p〉 and 〈b′, a′, p′〉 are composable triples, then there is a term witness-
ing that bb′ and aa′ are composable. The same applies to ph

ba and phb
a in the associativity

axiom, as well as the composability condition in the unit laws. Those arguments exist,
because they are practical when using equational reasoning patterns in chains of equations.
The type V is equivalent to the one without these extra arguments.
The next proposition is the key ingredient to proving that V is a mere proposition. It
expresses the vertical composition in terms of the multiplication in G1 and rests on the
homomorphism property of the vertical composition operation.

Proposition 4.26. Let ◦ be (the operation of) a vertical composition on G . Then

b ◦p a = b(ι(σ b−1))a

holds for all composable triples 〈b, a, p〉.

The classical proof can be found in [Por08, p. 6].

Proof. It is easy to see that

b ◦p a = b(ι(σ b−1))(ι(σ b)) ◦ (ι(σ b))(ι(σ b−1))a.

We suppress the witnesses that the arrows being composed are composable. Using the
homomorphism property of ◦ once, we see that

(ι(σ b−1))(ι(σ b)) ◦ (ι(σ b))(ι(σ b−1))a = (g(ι(σ b−1)) ◦ (ι(σ b))(ι(σ b−1)))(ι(σ b) ◦ a).

Another application of the interchange law gives

(b(ι(σ b−1)) ◦ (ι(σ b))(ι(σ b−1)))(ι(σ b) ◦ a) = (b ◦ ι(σ b))(ι(σ b−1) ◦ ι(σ b−1))(ι(σ b) ◦ a).

Using the right unit law on the left and right compositions, we obtain

(b ◦ ι(σ b))(ι(σ b−1) ◦ ι(σ b−1))(ι(σ b) ◦ a) = b(ι(σ b−1) ◦ ι(σ b−1))a.

Note that ι(σ(ι(σ b−1))) = ι(σ b−1). Hence, ι(σ b−1) ◦ ι(σ b−1) = ι(σ b−1). Combining
this chain of equations yields the desired identity.

Proposition 4.27. The type V of vertical compositions on G is a proposition.

70

Proof. To construct a path between two composition operations ◦ and ◦′, we use function
extensionality three times and then apply Proposition 4.26. This gives

b ◦p a = b(ι(σ b−1))a = b ◦′p a

for any composable triple 〈b, a, p〉. Note that the other axioms are universally quantified
statements about identities in groups, hence propositions. Lemma 2.18 produces the
desired dependent paths.

Finally, we have a DURG D
VertComp
IntReflGraph and a characterization

∫︁

D
VertComp
IntReflGraph of the identity

types of the type S2G of strict 2-groups.

Equivalence

Proposition 4.28. Assume that G satisfies (PFG). Then
b ◦p a :≡ b(ι(σ b−1))a

defines a vertical composition on G .

Proof. The way ◦ is defined, it already satisfies all axioms of a vertical composition without
the additional assumption (PFG), except for the interchange law. The proof of this claim
amounts to a simple verification. The details can be found in the formalization. Thus, we
only prove here that ◦ satisfies the interchange law

bb′(ι(σ (bb′)−1))aa′ = b(ι(σ b−1))ab′(ι(σ b′−1))a′

for composable b, a and b′, a′ in G1. Since cancelling is an equivalence, it suffices to show
that

b′(ι(σ (bb′)−1))a = (ι(σ b−1))ab′(ι(σ b′−1)). (4.9)
Clearly, the Peiffer identity is equivalent to

(a b′ : G1)→ a(ι(τ a−1))(ι(σ b′−1))b′ = (ι(σ b′−1))b′a(ι(τ a−1)). (4.10)
Inverting both sides, (4.10) implies

b′−1(ι(σ b′))(ι(τ a))a−1 = (ι(τ a))a−1 b′−1
ι(σ b′).

We substitute a ↦→ a−1 and b′ ↦→ b′−1. After simplifying we have the equivalent identity
b′(ι(σ b′−1))(ι(τ a−1))(a−1) = (ι(τ a−1))ab′(ι(σ b′−1)). (4.11)

(4.11) can easily be transformed to (4.9).

71

Proposition 4.29. If

_ ◦_ _ : (b a : G1)→ isComposable b a→ G1

satisfies the axioms of a vertical composition, then the graph G satisfies (PFG).

Proof. Let b b′ a : G1 such that b and a are composable. The interchange law and definition
of ◦ gives

bb′(ι(σ b′−1))(ι(σ b−1))aa′a′−1. (4.12)
We may substitute a′ :≡ ι(σ b′) in (4.12) and cancel b on the left, as well as a′ on the
right. Then we have exactly

b′(ι(σ b′−1))(ι(σ b−1))a = (ι(σ b−1))ab′(ι(σ b′−1)). (4.13)

We invert both sides of (4.13) and have

a−1(ι(σ b))(ι(σ b′))(ι(σ b′−1)) = (ι(σ b′))b′−1a−1(ι(σ b)). (4.14)

In (4.14) we substitute b :≡ b−1, b′ :≡ b′−1 and a :≡ a−1. The result is

a(ι(σ b−1))(ι(σ b′−1))b′ = (ι(σ b′−1))b′a(ι(σ b−1)). (4.15)

We now put b :≡ ι(τ a) and b′ :≡ b. Then

a(ι(τ a−1))(ι(σ b−1))b = (ι(σ b′−1))b′a(ι(τ a−1)).

The Peiffer identity follows immediately.

Theorem 4.30. There are equivalences

XModule≃ PeifferGraph≃ S2G .

Proof. The first equivalence is from the previous section. The results of this section establish
a fiberwise relational isomorphism between the Peiffer condition on graphs, and V . An
invocation of Theorem 3.25 gives the second equivalence.

72

5 Higher Groups in Cubical Type Theory

This chapter introduces pointed types as DURG structures, followed by two equivalent
definitions of pointed homotopies used to prove pointed function extensionality. After
proving a theorem about truncated pointed fibrations, we move on to the definition of
(n, k)-groups. We display homomorphisms over pairs of higher groups, characterizing
their identity type along the way. This sets up the proof that the type of (n, k)-groups is
an (n+ 1)-type. This is followed by a very short introduction to homotopy groups. A good
reference is [Uni13, Section 8]. The last two sections introduce the first Eilenberg-MacLane
space and use it to prove that pointed connected 1-types are equivalent to groups in the
ordinary sense.

5.1 Pointed Types

Recall that we have a URG structure SType on the universe Type of interest, where two
types are related if there is an equivalence between them. Reflexivity of this relation is
witnessed by the identity equivalence of a type.

Proposition 5.1. Pointedness can be displayed over universes, i.e., there is a DURG structure
D∗Type on the type family

λ (A : Type) ↦→ A.

Proof. Given two types AB : Type related by the equivalence e : A ≃ B, we define the
displayed relation as

a ∼=e b :≡ e a = b

for any a : A and b : B.
Reflexivity of this relation over a fixed type is trivial.

73

The ∼=-singleton over the identity equivalence of A at a : A is exactly the ordinary singleton
at a, and hence contractible.

Note that displaying points over types is already beyond the scope of displayed categories.
We define the types of pointed types

Type∗ :≡ (A : Type)× A.

Taking the total space
SType∗

:≡
∫︂

D∗Type

we see that pointed equivalences characterize the identity type of pointed types.

Definition 5.2. A pointed family over a pointed type 〈A,∗A〉 is a type family B : A→ Type
together with a base point ∗B : B ∗A. A pointed section f consists of a dependent function
(also called f) of type (a : A) → B a combined with a witness f∗ : f (∗A) = ∗B that f
preserves the basepoint. We call the type of pointed sections (a : 〈A,∗A〉)→∗ 〈B a,∗B〉.

We usually leave the basepoint implicit and write (a : A)→∗ B. The concept of a homotopy
between functions can be transferred to pointed sections.

Definition 5.3. Let f g : (a : A) →∗ B a. Define the two kinds of pointed homotopies
between f and g as

f ∼∗ g :≡ (a : A)→∗ 〈 f a = g a, f∗ · g∗
−1〉

and
f ∼P

∗ g :≡ (H : f ∼ g)× PathP (λ i ↦→ H ∗A i = ∗B) f∗ g∗.

Unraveling the definition of pointed Π-types, we see that
f ∼∗ g ≡ (H : f ∼ g)× (H ∗A = f∗ · g∗

−1).

Thus, both definitions only differ in how they require the homotopy H to act on the path
which witnesses that f preserves the basepoint. Pictorially, these are the squares the
homotopies need a filler of:

f ∗A g ∗A

f ∗A g ∗A

f∗ · g∗−1

H ∗A

g ∗A ∗B

f ∗A ∗B

g∗

H ∗A

f∗

(5.1)

74

Proposition 5.4. For pointed sections f g : (a : A)→∗ B a, the two kinds of pointed homo-
topies are equivalent as types. In symbols, this reads

(f ∼∗ g)≃ (f ∼P
∗ g).

Proof. Let H : f ∼ g. To show that the types of the fillers of the squares in (5.1) are
equivalent is to construct a path

P : (H ∗A = f∗ · g∗
−1) = (PathP (λ i ↦→ H ∗A i = ∗B) f∗ g∗).

To put the focus on the cubical argument, we give generic names to the relevant variables,
such that the squares become

x y

x y

q · r−1

p

(5.2)

and
y z

x z

r

p
q

. (5.3)

Path inversion is an equivalence, since it is its own pseudo-inverse. It follows that the
fillers of (5.2) are equivalent to

q · r−1 = p.

Since p = (p · r) · r−1, Lemma 2.6 shows that

(q · r−1 = p) = (q · r−1 = (p · r) · r−1).

Path concatenation on both sides is an equivalence. Whence, there is a path of type

(q · r−1 = (p · r) · r−1) = (p−1 · q = p−1 · (p · r)).

It is easy to construct paths p−1 · q = p−1 · q · refl and p−1 · (p · r) = r. It follows from
Lemma 2.5 and another application of Lemma 2.6 that

(p−1 · q = p−1 · (p · r)) = (p−1 ·· r ·· refl= r).

75

According to Lemma 2.4, the type p−1 ·· r ·· refl= r is equivalent to the fillers of (5.3). The
concatenation of these paths, some of which are obtained from univalence, can be taken
to be P . Next, we define the function

ϕ : (f ∼∗ g)→ (f ∼P
∗ g)

〈p1, p2〉 ↦→ 〈p1, transportP 〉

Transporting along a path is an equivalence by Proposition 2.9. Hence, ϕ is the total
function of a fiberwise equivalence. This implies that ϕ is an equivalence as well (Theo-
rem 2.10).

Theorem 5.5. For any two pointed sections f g : (a : A)→∗ B a, we have pointed function
extensionality, that is

(f ∼P
∗ g)≃ (f = g)

and hence
(f ∼∗ g)≃ (f = g).

Proof. We define
funExtP∗ : (f ∼P

∗ g)→ (f = g)

〈H, H∗〉 ↦→ λ i ↦→ 〈λ a ↦→ H a i, H∗i〉.

The first component, which generates a path of the underlying maps of f and g, is the same
one as in the usual, unpointed function extensionality. The second one is by construction
of ∼P

∗ exactly a path between f∗ and g∗, as needed. Its inverse is given by
funExtP−1

∗ p :≡ 〈λ a i ↦→ (p i)1 a,λ i ↦→ (p i)2〉.

To see that this is an inverse, let 〈H, H∗〉 : (f ∼P
∗ g). The image of this term is λ i ↦→ 〈λ x ↦→

H x i, H∗i〉. We have to provide a path of type
funExtP−1

∗ (λ i ↦→ 〈λ a ↦→ H a i, H∗i〉) = 〈H, H∗〉. (5.4)
The left-hand side is judgementally equal to

〈λ a i ↦→ H a i,λ i ↦→ H∗ i〉.

However, this is just 〈H, H∗〉, so refl solves (5.4). Conversely, let p : f = g. We have to
construct a path of type

funExtP∗ 〈λ a i ↦→ (p i)1 a,λ i ↦→ (p i)2〉= p (5.5)

76

The left-hand side is by definition

λ i ↦→ 〈λ a ↦→ (p i)1a, (p i)2〉.

However, this simplifies to p. In total, refl solves (5.5).

We move on to prove [BDR18, Theorem 3].

Theorem 5.6. For integers n≥ −1 and k ≥ −2 let 〈X ,∗X 〉 : Type>k+1
∗ be a (k+1)-connected,

pointed type and let Y : X → Type≤n+k
∗ be a fibration of (n+ k)-truncated, pointed types.

Then the type of pointed sections, (x : X)→∗ Y x , is n-truncated.

Proof. We prove this by induction on n. For the base case we have to show that the type
of pointed sections is a mere proposition. Since it is pointed by the trivial section

s̄ :≡ 〈λ x ↦→ ∗Y x , refl〉,

it must be contractible. We take s̄ to be the center of contraction. Let s be another section.
According to pointed function extensionality, it suffices to define a pointed homotopy
s̄ ∼∗ s. We define the k-connected map

f : 1→ X

∗ ↦→ ∗X .

It follows from the assumptions on the fibration Y , that P : λ x ↦→ s x = s̄ x is a family of
k-truncated types over X . Next, we apply the elimination principle for pointed connected
types [Uni13, Lemma 7.5.7] to f and P. Together with the induction principle of 1 this
yields an equivalence

e : (s̄ ∼ s)≃ (1→ (s̄ ∗X = s ∗X))≃ (s̄ ∗X = s ∗X).

Recall that
s̄ ∼∗ s ≡ (H : s̄ ∼ s)× (H ∗X = s̄∗ · s∗

−1).

It is easy to see that
H :≡ e−1 (refl · s∗

−1) : s̄ ∼ s

and that, viewing e as an isomorphism, its right inverse property at refl · s∗
−1 is of type

H ∗X = s̄∗ · s∗
−1. This completes the base case.

77

To prove the result for n+ 1, assuming the n case as the induction hypothesis, it suffices
to show that for any pointed section s, its self-identity type is n-truncated, according to
Proposition 2.21. Pointed function extensionality proves that

(s = s)≃ (s ∼∗ s).

We construct an equivalence
(s ∼∗ s)≃ (x : X)→∗ 〈s ∼ s, refl〉.

Since it follows from the induction hypothesis that the right hand side is an n-truncated
family, doing so will complete the proof.
Elements of s ∼∗ s consist of a homotopy H : s ∼ s and a path p : H ∗X = s∗ · s∗−1. Elements
of the type on the right are pairs of a homotopy H of the same kind, and a path H ∗X = refl.
It is now obvious that a constant map in the first component and an application of the
cancellation law for paths in the second component is an equivalence of the desired
type.

5.2 Homotopy Groups

We introduce loop spaces and homotopy groups.

Definition 5.7. The loop space of a pointed type 〈A,∗〉 is the pointed type
Ω〈A,∗〉 :≡ 〈∗= ∗, refl∗〉.

For any n ≥ 1, the n-tuple loop space Ωn〈A,∗〉 has the structure of a higher group with
delooping the connected component of A at ∗. We can use the set truncation to obtain a
set-level group.

Definition 5.8. For any pointed type 〈A,∗〉 and n≥ 1 the n-th homotopy group consists of
the type

πn〈A,∗〉 :≡ ∥Ωn〈A,∗〉∥0
with group operation coming from path concatenation in Ωn〈A,∗〉.

We remark that from now on we shall only ever be concerned with the first homotopy
group of a pointed connected 1-type. In that case, the set-truncation is superfluous and
can be dropped.

78

5.3 Higher Groups

Types in HoTT may be viewed as∞-groupoids by taking elements as objects, paths as
morphisms and higher paths as higher morphisms. Hence, we can see pointed connected
types as higher groups with carrier the loop space at the base point. The group operation
is given by path composition, refl provides the neutral element and the inverse operation
is path inversion. Higher paths witness unit, identity and cancellation laws. These higher
paths are themselves subject to further coherence conditions. The main reference is
[BDR18].
The same ideas hold true in Cubical Type Theory: an∞-group is a pointed connected
type BG, the delooping or classifying space of the carrier Ω〈BG,∗〉.
Ordinary set-level groups can be recovered by requiring that BG be a 1-type, because in
that case the group axioms are not subject to any non-trivial higher paths.
Double loop spaces are better behaved than single loop spaces. This is known as the
Eckman-Hilton argument [Uni13, Theorem 2.1.6]. This fact motivates the definition of
higher groups which can be delooped multiple times.

Lemma 5.9. For any k and n there is a URG structure on the type
(A : Type)× A× isConnk A× isTruncn A

pointed, k-connected and n-truncated types.

Proof. Apply Corollary 3.21 twice and take the total space.

Definition 5.10. For integers n≥ 0 and k ≥ 1 we define the type
〈n, k〉Grp :≡ (BkG : Type)× BkG × isConnk−1 BkG × isTruncn+k BkG

of k-tuply groupal n-groupoids or (n, k)-groups.

Set-level groups can be recovered as (0,1)-groups. Definition 5.10 justifies calling the
URG structure from Lemma 5.9 S〈n,k〉Grp. We see that pointed equivalences characterize
the identity type of (n, k)-groups.
A homomorphism of higher groups is a pointed map. We exhibit homomorphisms of
higher groups as displayed over pairs of higher groups, giving another example of a DURG
structure on a type family which is not 1-truncated.

79

Proposition 5.11. For any n and k, homomorphisms of (n, k)-groups can be displayed over
pairs of (n, k)-groups, i.e., there is a DURG structure on the type family

λ 〈BkG, BkH〉 ↦→ BkG→∗ BkH

over S〈n,k〉Grp ×S S〈n,k〉Grp.

Proof. The setup for the displayed relation is analogous to that of ordinary group homo-
morphisms. In the diagram

BkG BkH

BkG′ BkH ′

f

∗
p ∼
∗

q ∼

∗f ′

∗

of (n, k)-groups BkG, BkG′, BkH, BkH ′, pointed maps f and f ′, and pointed equivalences
p and q we define f ∼=〈p,q〉 f ′ to be the type of pointed homotopies filling that square.
It follows from the left and right unit laws for pointed function composition together
with pointed function extensionality that this relation satisfies the axioms for a DURG
structure.

The total space construction for DURG structures implies that the identity type f = f ′ of
any two pointed maps f f ′ : BkG→∗ BkH is equivalent to the type of homotopies of the
underlying maps of f and f ′.

Corollary 5.12. For any BkG BkH : 〈n, k〉Grp, the type of homomorphisms

BkG→∗ BkH

is an n-type. Furthermore, 〈n, k〉Grp is (n+ 1)-truncated.

Proof. The first claim is a consequence of Theorem 5.6 and Proposition 5.11. Since pointed
equivalences are a subtype of pointed maps, the second claim follows from the first.

80

5.4 Eilenberg-MacLane Spaces

We define the first Eilenberg-MacLane space of a group as a higher inductive type and show
that this construction is a right inverse to the first homotopy group. The main reference is
[LF14]. We put the focus on the cubical aspects of the argument.

Definition 5.13. The first Eilenberg-MacLane space of a group G is the higher inductive
type E1 G, abbreviated to E , with constuctors

baseE : E ;

loopE : G→ baseE = baseE ;

compE : (g h : G)→ PathP (λ i ↦→ baseE = loopEh i) (loopE g) (loopE (gh));

squashE : isTrunc1 E .

The compE constructor fills the square

a c

a b

loopE (gh)

loopE g

loopEh .

This is for technical purposes sometimes more convenient than the equivalent condition
of requiring paths between loopE (gh) and (loopE g) · (loopEh).

Lemma 5.14. Let g h : G. Then there is a term

comp′E : loopE (gh) = (loopE g) · (loopEh).

Proof. Any two definitions of double composition on the same open box are equal. The
double concatenation refl ·· loopE g ·· loopEh with filler obtained from the homogeneous
composition operation, and loopE (gh) with filler compE g h, are two double compositions.

The next lemma prepares the elimination principle of E (Theorem 5.16). It is an immediate
consequence of identity induction (J).

81

Lemma 5.15. Let B : E → Type≤−1 be a propositional family over E . Then, for any p : x = y,
bx : B x and by : B y, there is a term

elimEq : PathP (λ i ↦→ B (pi)) bx by .

In general, the elimination rule for a higher inductive type states that to define a function
out of it, one has to give a point for every point constructor, a path for each path constructor
and a higher path for each higher path constructor.

Theorem 5.16. Let B : E → Type≤1 be a family of groupoids over E , and ∗ : B baseE . If there
is a map

toLoop : (g : G)→ PathP (λ i ↦→ B (loopE g i)) ∗ ∗

such that the dependent square

∗ ∗

∗ ∗

toLoop(gh)

toLoop h

toLoop g

(5.6)

has a filler toIsComp for all g h : G, then there is a function f : (x : E)→∗ B x .

Proof. We define f by induction on E . Take f baseE :≡ ∗B. The action of f on loopE g
should be the same as toLoop. The obvious choice is

f (loopE g i) :≡ toLoop g i,

where g : G and i : I. This is different from HoTT where dependent paths are only
expressed in terms of transport.

Similarly, a proof of the homomorphism property – a dependent path over compE – can
be defined directly:

f (compE g h i j) :≡ toIsComp g h i j.

The fourth case, a path over squashE , asks for a proof that B is a 1-type over E . This follows
immediately from B x being a 1-type for all x .

82

We remark that if B is constant over E , Theorem 5.16 becomes the recursion principle of E .
In that case the square (5.6) is non-dependent and its fillers are equivalent to the type
toLoop(gh) = toLoop g · toLoop h.
We further note that if B is a family of sets, toIsComp can always be constructed, being a
path between identity proofs in a set. Similarly, if B is a propositional family, the argument
toLoop becomes superfluous.
Using this we can prove that E is connected. Simply eliminate into the proposition
isConn0 E .

Lemma 5.17. The function loopE respects the neutral element, and inverses in G, i.e.,

loopE1= refl

and
(g : G)→ loopE g−1 = (loopE g)−1.

Proof. Both identities use the same idea as the standard proof showing that group homo-
morphisms preserve the unit element and inverses. The difference here is that the domain
is a priori not a group, but merely an HIT, the paths of which are of course subject to the
needed groupoid laws. We sketch the proof of the first identity. It is easy to see that

loopE1= loopE1 · refl= loopE1 · loopE1 · (loopE1)−1.

By comp′E , we have that loopE1 · loopE1 = loopE (1 · 1) = loopE1. Cancellation of paths
finishes the proof of the first identity.

Being a pointed connected 1-type we see that E is a (0,1)-group. The recursion principle
of E can be more conveniently rephrased as follows. Any homomorphism of groups

G→Grp π1〈B,∗B〉

induces a homomorphism of (0,1)-groups

E →∗ 〈B,∗B〉.

Theorem 5.18. The group π1 E is isomorphic to G.

83

Proof. We construct a pseudo-isomorphism of the underlying types which respects the
group operation using the encode–decode method (cf. [LS13]).
We have a constructor loopE : G→ ΩE . Lemma 5.14 states that loopE respects the group
operation. The goal is to build a type family Codes : E → Type≤0 such that (CodesbaseE) =
G, because the function

encode : (x : E)→ (baseE = x)→ Codes x

encodex p :≡ substCodes p 1

at x ≡ baseE gives rise to a potential inverse to loopE .
The family Codes is defined by E -recursion into the groupoid Type≤0 with basepoint
〈G, setG〉. The recursion principle asks for a map

ϕ : G→ (〈G, setG〉= 〈G, setG〉)

such that
〈G, setG〉 〈G, setG〉

〈G, setG〉 〈G, setG〉

ϕ(gh)

ϕ h

ϕ g

can be filled for all g h : G. Since being truncated is a proposition and by univalence, ϕ
can be obtained from

ϕ′ : G→ (G→ G)

g ↦→ λ h ↦→ hg,

combined with any proof that ϕ′ is a fiberwise equivalence (of carrier types). Let g h : G.
It is sufficient fill the simpler square:

G G

G G

ϕ′(gh)

ϕ′ h

ϕ′ g

(5.7)

By Lemma 2.4, the fillers of (5.7) are identical to the paths of type

refl ··ϕ′ g ··ϕ′ h= ϕ′(gh).

84

Such a path can be constructed using that idToEquiv−1 respects path composition and
that ϕ′ sends a composition in G to a composition of equivalences. This completes the
definition of Codes.
In total, we compute

encodebaseE (loopE g)≡ substCodes (loopE g)1= g,

so encodebaseE indeed defines a left inverse to loopE .
We show that it is also a right inverse. The function loopE can be generalized to

decode : (x : E)→ Codes x → baseE = x

using the elimination principle of E . This requires a base point in the fiber of that family
over baseE . The obvious choice is

decodebaseE
:≡ loopE .

By Proposition 2.24, Codes x → baseE = x is a set. It follows that we need to supply a
proof that for any g : G there is a path of type

PathP (λ i ↦→ Codes(loopE g i)→ baseE = loopE g i) loopE loopE

Such a path can be obtained from applying Lemma 2.15 to the equivalence λ h ↦→ hg :
G ≃ G and compE . This completes the definition of decode.
A simple path induction with Lemma 5.17 in the base case shows that encode is a right
inverse of decode. In particular, encodebaseE is a right inverse of decodebaseE .

5.5 Delooping Groups

The goal of this section is to prove that there is an equivalence

〈0,1〉Grp Grp .
π1

E

To do so we construct a relational isomorphism between the underlying graphs of SGrp
and S〈0,1〉Grp using parts of the adjunction

(E1 H →∗ BG)≃ (H →Grp π1 BG).

for H : Grp and BG : 〈0,1〉Grp.

85

Proposition 5.19. There is a map

ϕ : (π1(E1 H)→Grp π1 BG)→ (E1 H →∗ BG)

which restricts to isomorphisms in the sense that if f : π1(E1 H) ≃Grp π1 BG, then ϕ f is a
pointed equivalence.

Proof. Let f : π1(E1 H)→Grp π1 BG. From Theorem 5.18 we have a g : H →Grp π1(E1 H).
Put

h :≡ f ◦Grp g : H →Grp π1 BG.

The type BG is a 1-type, so by E1 H-recursion we have a map h′ : E1 H → BG. Pointedness
of h′ is trivial.
Being a map between pointed connected types, h′ is surjective. To see this, let z : BG. We
need to show that

∥(x : E1 H)× (h′ x = z)∥−1.

By definition, this means that

∥(x : E1 H)× ∥h′ x = z∥−1∥−1.

We choose baseE for the first component and show that ∥h′ baseE = z∥−1 is contractible.
This is equivalent to the statement that h′ baseE = z is (−1)-connected, but this follows
from the connectedness of BG.
Assume now that f is an isomorphism to begin with. If we can show that h′ is an embedding,
then it is also an equivalence (cf. [Uni13, Theorem 4.6.3]).
We claim that it is sufficient to check that aph′ : (x = y)→ (h′ x = h′ y) is an equivalence at
x ≡ y ≡ baseE . This follows from two applications of the elimination principle for pointed
connected types, because the map basepoint is (−1)-connected and being an embedding
is a proposition.
We are now in the situation

H π1(E1 H) π1 BGe f

aph′

where e is the equivalence constructed in Theorem 5.18. By construction we have that the
functions f ◦ e and aph′ are trivially homotopic. The 2-out-of-3 property of equivalences
(cf. [Uni13, Theorem 4.7.1]) implies that aph′ is an equivalence.

86

Theorem 5.20. The functors E1 and π1 define an equivalence between 〈0,1〉Grp and Grp.

Proof. The left inverse property is given by Theorem 5.18. Conversely, let BG : 〈0,1〉Grp.
Theorem 5.18 also yields an isomorphism f between the groups π1(E1(π1 BG)) and π1 BG.
We can apply the previous proposition to H :≡ π1 BG and f to see that E1(π1 BG)≃∗ BG.
We have thus constructed a relational isomorphism between S〈0,1〉Grp and SGrp. This
induces an equivalence on the underlying types.

87

6 Formalization

This chapter is about the formalization of the results of the previous chapters in Cubical
Agda. General references for univalent foundations in Agda are [Esc20] and [Ang+20].

6.1 The Code

My results are developed on a fork of the official Cubical Agda library.1 They are publicly
available on GitHub.2 My code is about 7700 lines on top of the Cubical Agda library. For
convenience,3 all results are imported to a single file.4 On the day of submission5 that file
has been tested with the latest Agda version6. It contains a list of all results of this paper
and links to their implementation.

6.2 Performance

The file Cubical/Papers/HigherGroupsViaDURG.agda takes about 30 seconds to type-check.
The project uses most of the tools Agda offers the performance of type checking.
The abstract keyword can be used to hide the implementation details of irrelevant terms
such as proofs of propositions.
1https://github.com/Agda/cubical
2https://github.com/Schippmunk/cubical
3The Emacs and Atom Agda modes provide functionality to jump to the definition of a name currently in
scope.

4Cubical/Papers/HigherGroupsViaDURG.agda
5Commit ID: b3609c07620847db571ac900b6fa8bfc0f7733d4
62.6.2−8ed0362

89

https://github.com/Schippmunk/cubical/blob/thesis/Cubical/Papers/HigherGroupsViaDURG.agda
https://github.com/Agda/cubical
https://github.com/Schippmunk/cubical
https://github.com/Schippmunk/cubical/blob/thesis/Cubical/Papers/HigherGroupsViaDURG.agda

Another way of preventing a definition from expanding when reduced is the use of
copatterns. When elements of records are defined using the record keyword, Agda still
computes a normal form, which is in many cases quite large. In the case of DURG structures
this prevents some of the operations from type checking within multiple hours. With
copatterns, Agda merely has to check equality on the arguments.

6.3 Conventions

We highlight some notable code conventions of the library. Sometimes these deviate from
the standard literature.

• In the library, truncation levels are shifted by 2 to start at 0. So, 0-types are con-
tactible, 1-types propositions, 2-types sets, etc. This is because an implementation
of the natural numbers is built into Agda, and that allows for use of actual numbers
to be used as terms of N, rather than n-fold applications of SN to 0N.

• Furthermore, in the library, a proposition is defined to be a type satisfying (x y : X)→
x = y, rather than the equivalent statement that all identity types are contractible.
This is advantageous, because the chosen definition is used more often. However,
proving something for all truncation levels now requires two case distinctions instead
of one.

• There is a convention in the cubical library for the group operation to be written
additively and we adopted this convention. In Agda, overloading of symbols is
limited and −0 x looks better than inv0 x or even x−10 . Similarly, the multiplication
sign · cannot be dropped, unlike in informal mathematics. A dot could also be
confused with the path concatenation operation.

• When formalizing composite structures in Cubical Agda one has to decide whether
to use Σ- or record-types. The former are more flexible when constructing paths,
but also slower. The synthesis is that important types such as Grp are incarnated as
both record- and Σ-types.

90

7 Conclusion

In this chapter we shall dwell on what we learned about the framework provided by
DURGs and present some potential future work.

7.1 Discussion

When we began the project the intention was only to internalize the equivalence of strict
2-groups and crossed modules. Constructing the maps in both directions was manageable,
but when trying to prove that these maps were mutual inverses, we ran into two problems:
the time it took to type-check was unacceptable and constructing paths between the
transported structures was very difficult.
We realized a more systematic approach was necessary. The lack of category theory
developed in the library at the time inspired the definition of displayed URGs. These also
had performance issues which could, however, easily be resolved by the use of copatterns.
All things considered, DURGs were very successful in providing a systematic proof of the
equivalence and characterization of the identity types of our multi-component structures.
That being said, note that there is no guarantee we found the ‘most cubical’ proofs in this
work. For example, there might be a proof of Proposition 5.4 that only uses groupoid
laws like a generalization of Lemma 2.6 and does not rely on univalence – which would
probably be avoided in favour of direct cubical arguments to qualify as a ‘proof from the
book’ [AZ98].
In the same spirit, many proofs from the last two sections of Chapter 4 about identities in
groups were very tedious to prove by hand. A ring solver could have vastly reduced the
time it took to formalize the details.
In what follows we collect some general aspects and comparisons related to DURGs.

91

DURGs in General

• For any graph ∼=: A→ A→ Type there is an equivalence

((ρ : (a : A)→ a ∼= a)× isUnivalent ∼= ρ)≃ ((a a′ : A)→ (a = a′)≃ (a ∼= a′)).

Hence, one could drop the reflexivity field and speak of (displayed) univalent graphs.
It is not clear wheter this shortens the code, since URGs are – except for very simple
cases – created by showing that the relational singleton is contractible. If nothing
else, it at least shortens the name of the concept.

• When the process of adding structure to a type using DURGs is repeated, one has to
make the decision of ‘how to layer the cake’. To keep the univalence proofs simple, it
makes sense to implement a layering as fine as possible. This practice also promotes
code reuse and modularity.

It is worthy of remark that we did not always live up to this standard ourselves. The
bottom level of our towers of structure in Chapter 4 is the type of groups – the SIP
of which had been obtained from the standard notion of structure (see below). Any
library aiming to formalize a lot of algebraic structures should avoid this dependence
on the theory of the standard notion.

• Development in Cubical Agda is sometimes slowed down due to the lack of code
conventions. The abstraction and uniformity DURGs offer simplify the issue of
finding a good convention.

• Reflexive graphs form an (∞, 1)-topos with displayed reflexive graphs corresponding
exactly to morphisms of reflexive graphs. DURGs form a sub-(∞, 1)-topos thereof.
This enables the use of topos theory to produce theorems about DURGs. For example,
the construction in Corollary 3.21 corresponds to the categorical pullback.

• Bentzen [Ben19] prepares the programme of naive cubical reasoning and suggests
to vastly extend it. If DURGs can be established across the different type theories,
the need for such a programme is limited to what one needs to prove enough
meta-properties of DURGs.

92

DURGs Versus Displayed Categories

• The main advantage of DURGs is that they are not limited to 1-truncated type
families. While it should be possible to construct displayed higher categories, their
internalization in type theory is most likely cumbersome to work with.

• Another advantage is that DURGs are easier to set up. Their definition and basic
operations merely require some basic properties of univalence, while quite some
category theory needs to be developed in the given proof assistant in order to make
good use of displayed categories.

• Every univalent category induces a URG on its type of objects, so if one is only
interested in the invertible morphisms, URGs might be the preferred framework.
However, displayed categories likely serve as a better foundation for work with
non-invertible morphisms and general categorical constructions.

DURGs Versus the Standard Notion of Structure

• In the introduction we hinted at other notions of structure. We briefly describe the
‘standard notion’ due to Escardó [Esc20]. Consider a type family S : Type→ Type.
The type of S-structures is (A : Type)×S A. Such a pair 〈A, s〉 means that the type A is
equipped with an S-structure, witnessed by s. The procedure of building a structure
is similar, but the tower of Σ-types associates the other way. For instance, the type
of types with an associative binary operation is presented as

(A : Type)× ((+ : A→ A→ A)× ((a b c : A)→ (a+ b) + c = a+ (b+ c))),

while a tower of DURGs produces a URG structure on

(〈A,+〉 : (A : Type)× A→ A→ A)× ((a b c : A)→ (a+ b) + c = a+ (b+ c)).

• It is immediate that DURGs need more projections to obtain the carrier type – stan-
dard structures always need only one. Conversely, the forgetful functions mapping a
structure to a weaker one have a shorter definition in the framework of DURGs.

• Every standard structure on a type is equivalently a DURG over the URG of equiv-
alences on the universe, so DURGs are at least as general as the standard notion.
In its current form, the standard notion does not properly capture structures with
more than one carrier type or hierarchies shaped like diamonds [SUM20].

93

While more operations could be added to the standard notion in order to support
more complex structures, DURGs do not have these issues in the first place. Hence,
they might be a better choice.

7.2 Future Work

DURGs show a lot of potential in uniformly performing and understanding constructions
in type theory. Thus, it is worthwile to explore more of their properties.

DURGs in General

• There are many common constructions, such as homotopy pullbacks, which should
be revisited in the context of DURGs. These are not limited to mathematical objects,
as the example of lists together with their different implementations shows (cf.
[Ang+20]). Along the way, more operations making the process of formalizing more
convenient will arise – for example, a symmetric analogue to Theorem 3.25 or a
proof that Theorem 3.19 defines an equivalence.
An important item on the list of constructions to be revisited in this context are
categories. Tools to transfer results between categories and URGs are desirable for
any library wishing to support both. Possible approaches include constructing a
URG structure on the type of categories or defining a category structure on the type
of URGs.

• One could construct a URG structure on the type of URG and even DURG structures.
Doing so would allow the framework of DURGs to do its own meta-theory.
Related to this is that it should be made precise to what extent DURGs form a model
of type theory within itself.

• Agda’s reflection mechanism can likely be used to simplify and automate parts of the
process of constructing DURG structures. Since record-types are more performant,
it would be advantageous to be able to automatically identify them with their
corresponding nested Σ-type. Algebraic hierarchies naturally carry a directed acyclic
graph structure. Thus, reflection can probably be used to generalize operations on
them.

94

• It might be profitable to define an alternate Σ-type naturally associating to the
left, because the deeply nested Σ-types sometimes become confusing. Even better
would be a type theory in which composite Σ-types are judgementally equal to their
differently associated versions.

• Another starting point for finding more theorems about DURGs is higher topos
theory, as suggested in the discussion above.

Higher Groups

This thesis shows how the development of higher groups in a cubical setting can be
progressed using DURGs.
The components of our implementation of the theory of higher groups in Cubical Agda are
limited to the ingredients to the proof that groups are (0,1)-groups. Thus, it makes sense
to formalize more foundations like higher Eilenberg-MacLane spaces and group actions of
higher groups before tackling open problems.
Either way, there are many open problems in the topic of higher groups; see [BDR18,
p.24]. One possible next goal is to construct the map that turns a strict 2-group into a
(1,1)-group as a higher inductive type.

95

Bibliography

[Acz12] Peter Aczel. Homotopy Type Theory and the Structure Identity Principle. Feb.
2012. url: https://www.newton.ac.uk/files/seminar/20120207
160016301-153011.pdf.

[AHH18] Carlo Angiuli, Kuen-Bang Hou (Favonia), and Robert Harper. “Cartesian
Cubical Computational Type Theory: Constructive Reasoning with Paths and
Equalities”. In: 27th EACSL Annual Conference on Computer Science Logic (CSL
2018). Ed. by Dan Ghica and Achim Jung. Vol. 119. Leibniz International
Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2018, 6:1–6:17. isbn: 978-3-95977-088-0.
doi: 10.4230/LIPIcs.CSL.2018.6.

[AL19] Benedikt Ahrens and Peter Lefanu Lumsdaine. “Displayed Categories”. In:
Logical Methods in Computer Science 15.1, 20 (2019). doi: 10.23638/LMCS-
15(1:20)2019.

[Ang+20] Carlo Angiuli, Evan Cavallo, Anders Mörtberg, and Max Zeuner. Internalizing
Representation Independence with Univalence. 2020. arXiv: 2009.05547
[cs.PL].

[Awo13] Steve Awodey. “Structuralism, Invariance, and Univalence†”. In: Philosophia
Mathematica 22.1 (Oct. 2013), pp. 1–11. issn: 0031-8019. doi: 10.1093/
philmat/nkt030.

[AZ98] Martin Aigner and Günter M. Ziegler. Proofs from the Book. 1998.
[BDR18] Ulrik Buchholtz, Floris van Doorn, and Egbert Rijke. “Higher Groups in Homo-

topy Type Theory”. In: Proceedings of the 33rd Annual ACM/IEEE Symposium
on Logic in Computer Science. LICS ’18. Oxford, United Kingdom: Association
for Computing Machinery, 2018, pp. 205–214. isbn: 9781450355834. doi:
10.1145/3209108.3209150.

97

https://www.newton.ac.uk/files/seminar/20120207160016301-153011.pdf
https://www.newton.ac.uk/files/seminar/20120207160016301-153011.pdf
https://doi.org/10.4230/LIPIcs.CSL.2018.6
https://doi.org/10.23638/LMCS-15(1:20)2019
https://doi.org/10.23638/LMCS-15(1:20)2019
https://arxiv.org/abs/2009.05547
https://arxiv.org/abs/2009.05547
https://doi.org/10.1093/philmat/nkt030
https://doi.org/10.1093/philmat/nkt030
https://doi.org/10.1145/3209108.3209150

[Ben19] Bruno Bentzen. Naive cubical type theory. 2019. url: http://philsci-
archive.pitt.edu/17148/.

[Buc19] Ulrik Buchholtz. “Higher Structures in Homotopy Type Theory”. In: Reflec-
tions on the Foundations of Mathematics: Univalent Foundations, Set Theory
and General Thoughts. Ed. by Stefania Centrone, Deborah Kant, and Deniz
Sarikaya. Cham: Springer International Publishing, 2019, pp. 151–172. isbn:
978-3-030-15655-8. doi: 10.1007/978-3-030-15655-8_7.

[CD13] Thierry Coquand and Nils Anders Danielsson. “Isomorphism is equality”. In:
Indagationes Mathematicae 24.4 (2013). In memory of N.G. (Dick) de Bruijn
(1918–2012), pp. 1105–1120. issn: 0019-3577. doi: https://doi.org/
10.1016/j.indag.2013.09.002.

[CHM18] Thierry Coquand, Simon Huber, and Anders Mörtberg. “On Higher Induc-
tive Types in Cubical Type Theory”. In: Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science. LICS ’18. Oxford, United
Kingdom: Association for Computing Machinery, 2018, pp. 255–264. isbn:
9781450355834. doi: 10.1145/3209108.3209197.

[Coh+18] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. “Cubi-
cal Type Theory: A Constructive Interpretation of the Univalence Axiom”.
In: 21st International Conference on Types for Proofs and Programs (TYPES
2015). Ed. by Tarmo Uustalu. Vol. 69. Leibniz International Proceedings in
Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2018, 5:1–5:34. isbn: 978-3-95977-030-9. doi: 10.4230/
LIPIcs.TYPES.2015.5.

[DF04] David Steven Dummit and Richard M Foote. Abstract algebra. Vol. 3. Wiley
Hoboken, 2004.

[Esc20] Martin Escardo. Introduction to Univalent Foundations of Mathematics with
Agda. https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-
Lecture-Notes/HoTT-UF-Agda.html. 2020.

[LF14] Daniel R. Licata and Eric Finster. “Eilenberg-MacLane Spaces in Homotopy
Type Theory”. In: Proceedings of the Joint Meeting of the Twenty-Third EACSL
Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). CSL-
LICS ’14. Vienna, Austria: Association for Computing Machinery, 2014. isbn:
9781450328869. doi: 10.1145/2603088.2603153.

98

http://philsci-archive.pitt.edu/17148/
http://philsci-archive.pitt.edu/17148/
https://doi.org/10.1007/978-3-030-15655-8_7
https://doi.org/https://doi.org/10.1016/j.indag.2013.09.002
https://doi.org/https://doi.org/10.1016/j.indag.2013.09.002
https://doi.org/10.1145/3209108.3209197
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html
https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html
https://doi.org/10.1145/2603088.2603153

[LS13] Daniel R. Licata and Michael Shulman. Calculating the Fundamental Group of
the Circle in Homotopy Type Theory. 2013. arXiv: 1301.3443 [math.LO].

[MM10] Sandra Mantovani and Giuseppe Metere. “Internal crossed modules and
Peiffer condition”. In: Theory and Applications of Categories [electronic only]
23 (Jan. 2010).

[Ort19] Richard Ian Orton. “Cubical Models of Homotopy Type Theory - An Internal
Approach”. Thesis. University of Cambridge, 2019. doi: 10.17863/CAM.
36690.

[Por08] Sven-S. Porst. Strict 2-Groups are Crossed Modules. 2008. arXiv: 0812.1464
[math.CT].

[Rau15] Jakob von Raumer. “Formalization of Non-Abelian Topology for Homotopy
Type Theory”. MA thesis. May 2015.

[Rij18] Egbert Rijke. Introduction to Homotopy Type Theory. https://github.
com/EgbertRijke/HoTT-Intro/blob/master/pdfs/2018-hott-
intro-course.pdf. 2018.

[Rij19] Egbert Rijke. “Classifying Types”. In: arXiv e-prints (June 2019). eprint:
1906.09435 (math.LO).

[SUM20] Daniel Selsam, Sebastian Ullrich, and Leonardo de Moura. Tabled Typeclass
Resolution. 2020. arXiv: 2001.04301 [cs.PL].

[Uni13] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foun-
dations of Mathematics. Institute for Advanced Study: https://homotopy
typetheory.org/book, 2013.

99

https://arxiv.org/abs/1301.3443
https://doi.org/10.17863/CAM.36690
https://doi.org/10.17863/CAM.36690
https://arxiv.org/abs/0812.1464
https://arxiv.org/abs/0812.1464
https://github.com/EgbertRijke/HoTT-Intro/blob/master/pdfs/2018-hott-intro-course.pdf
https://github.com/EgbertRijke/HoTT-Intro/blob/master/pdfs/2018-hott-intro-course.pdf
https://github.com/EgbertRijke/HoTT-Intro/blob/master/pdfs/2018-hott-intro-course.pdf
1906.09435
https://arxiv.org/abs/2001.04301
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book

Erklärung zur Abschlussarbeit gemäß § 22 Abs. 7 APB TU Darm-
stadt

Hiermit versichere ich, Johannes Philipp Manuel Schipp von Branitz, die vorliegende
Master-Thesis gemäß § 22 Abs. 7 APB der TU Darmstadt ohne Hilfe Dritter und nur
mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die
Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese Arbeit hat
in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.
Mir ist bekannt, dass im Falle eines Plagiats (§38 Abs.2 APB) ein Täuschungsversuch
vorliegt, der dazu führt, dass die Arbeit mit 5,0 bewertet und damit ein Prüfungsversuch
verbraucht wird. Abschlussarbeiten dürfen nur einmal wiederholt werden.

Darmstadt, October 22, 2020
J. Schipp von Branitz

Thesis Statement
pursuant to § 22 paragraph 7 of APB TU Darmstadt

I herewith formally declare that I, Johannes Philipp Manuel Schipp von Branitz, have
written the submitted thesis independently pursuant to § 22 paragraph 7 of APB TU
Darmstadt. I did not use any outside support except for the quoted literature and other
sources mentioned in the paper. I clearly marked and separately listed all of the literature
and all of the other sources which I employed when producing this academic work, either
literally or in content. This thesis has not been handed in or published before in the same
or similar form.
I am aware, that in case of an attempt at deception based on plagiarism (§38 Abs. 2 APB),
the thesis would be graded with 5,0 and counted as one failed examination attempt. The
thesis may only be repeated once.

100

	Introduction
	Overview
	Contributions
	Acknowledgments

	Cubical Type Theory
	Dependent Type Theory
	Path Types
	Cubical Groupoid Laws
	Functions, Equivalences and Univalence
	Truncated and Connected Types
	Groups

	Displayed Structures
	Motivation
	Displayed Categories
	Univalent Reflexive Graphs
	Displayed Univalent Reflexive Graphs
	Operations on Displayed Univalent Reflexive Graphs
	Constructing Equivalences Using Displayed Univalent Reflexive Graphs

	Equivalence of Strict 2-Groups and Crossed Modules
	Strict 2-Groups
	Crossed Modules
	Group Actions and Split Monomorphisms
	Precrossed Modules and Internal Reflexive Graphs
	Crossed Modules and Peiffer Graphs
	Peiffer Graphs and Strict 2-Groups

	Higher Groups in Cubical Type Theory
	Pointed Types
	Homotopy Groups
	Higher Groups
	Eilenberg-MacLane Spaces
	Delooping Groups

	Formalization
	The Code
	Performance
	Conventions

	Conclusion
	Discussion
	Future Work

	Bibliography
	Thesis Statement

