PROPOSITIONAL GEOMETRIC TYPE THEORY HOTT/UF 2025

Johannes Schipp von Branitz¹ Ulrik Buchholtz²

University of Nottingham

April 16, 2025

¹https://jsvb.xyz

²https://ulrikbuchholtz.dk

SETTING & IDEA

Kind of Space	Geometric Int. Lang	Full Int. Lang
Top _{sob}	prop. geom. logic	compl. Heyting alg.
Loc	prop. geom. logic	compl. Heyting alg.
Topos	geom. logic	MLTT
∞ -Topos	∞-geom. logic?	HoTT

ightharpoonup Toposes classify geometric theories \mathbb{T} :

$$Topos(\mathcal{E}, [\mathbb{T}]) \cong Mod_{\mathbb{T}}(\mathcal{E}).$$

- ▶ Geometric logic is incomplete, so we need to study models in all toposes.
- Some topos-valid constructions, such as Π-types, are not geometric/continuous, i.e. not preserved by inverse image functors.
- ► There are still toposes classifying arbitrary objects or maps, so geometric reasoning should suffice.
- ► This suggests treating toposes as types (cf. [Vic07]).

MOTIVATION

- Recognition of geometric statements
- ▶ Transfer of results: *geometric* consequences of non-geometric statements are preserved
- ▶ Unification of external and internal perspective
- Unification of synthetic mathematics (SAG, SDG, STC)
- ► General treatment of modalities
- ► Recognition of classified geometric theories
- ► Synthetic Morita equivalences/bridges
- ▶ Definition of ∞-geometric logic
- ► Formalisation

RELATED WORK

There are lots of related ideas. None of them talk faithfully about *all* toposes, use the universal property of toposes as classifying spaces, and are an extension of HoTT.

- ► Topos-theoretic Multiverse [Ble]
- ► Multimodal Adjoint Type Theory [Shu23]
- ► Continuous Truth [Fou13]
- ► Abstract Stone Duality [Tay11]
- ► Synthetic Topology [Esc04]
- ► Synthetic Topos Theory [Uem]
- ► Arithmetic Type Theory [Vic08]

SKETCH OF INTENDED SEMANTICS

GTT should³ be modeled by

$$Sh_{\infty}(Topos^1_{(2,1)},J_{\acute{e}tale})$$

with base type O = [FinSet, Set] classifying étale spaces (a.k.a. internal types)

$$T(X) \longrightarrow \dot{\mathbf{O}}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathcal{E} \xrightarrow{X} \mathbf{O}$$

letting us recover the Sierpinski space

$$\mathbf{S} = \sum_{X:\mathbf{O}} isProp(\mathbf{T}(X)).$$

³up to strictness and size issues, and a good choice of Grothendieck topology

INTENDED SEMANTICS

▶ Approximate above setting using semantics in the category

$$Sh_0(Loc,J_{opencover}) \\$$

of sheaves of sets on the category of localic toposes with the subcanonical open cover topology.

► The Sierpinski space classifies open subtypes:

$$\begin{array}{ccc}
\Gamma(p) & \longrightarrow & \mathbf{1} \\
\downarrow & & \downarrow \\
A & \stackrel{p}{\longrightarrow} & \mathbf{S}
\end{array}$$

SYNTAX

- ► Intensional MLTT
- ► Tarski-style universe

$$\frac{\Gamma \vdash p : \mathbf{S}}{\Gamma \vdash \mathbf{T}(p) \text{ type}}$$

- ▶ Bottom and top elements \bot , \top : S with $\mathbf{T}(\bot) \equiv \mathbf{0}$ and $\mathbf{T}(\top) \equiv \mathbf{1}$.
- ▶ Primitive binary conjunctions \land : $S \rightarrow S \rightarrow S$
- ▶ Order relation $p \le q :\equiv (p \land q =_{\mathbf{S}} p)$
- ► Meet-semilattice axioms

OVERT DISCRETE SPACES

▶ $f: A \rightarrow B$ is open if

$$f^*: (B \to S) \to (A \to S)$$

has a left adjoint $f_!$.

▶ *I* is *overt* if $!: I \rightarrow \mathbf{1}$ is open, yielding

$$\bigvee: (I \to \mathbf{S}) \to \mathbf{S}.$$

- ▶ *A* is *discrete* if $\Delta : A \rightarrow A \times A$ is open
- ▶ Assume **N** is overt discrete, **S**, $\mathbf{T}(p)$ overt.
- ▶ Being overt discrete is closed under positive type formers.

$$(\mathbf{T}(p) \to \mathbf{S}) \to \sum_{q:\mathbf{S}} (q \le p)$$

$$\varphi \mapsto p \land \bigvee_{x:\mathbf{T}(p)} \varphi(x)$$

is an equivalence.

DIRECTED UNIVALENCE

For A and B overt discrete we should have directed univalence

$$(A \to B) \tilde{\to} \sum_{\gamma: \mathbf{S} \to \mathrm{ODisc}} (\gamma(\bot) = A) \times (\gamma(\top) = B)$$
$$f \mapsto \lambda p. \sum_{b: B} \mathbf{T}(p) \star \mathrm{fib}_f(b),$$

just like in Condensed Type Theory [Bar24, Com24].

CURRENT WORK

- ► Characterise the topology of function spaces
- ▶ Use synthetic quasi-coherence and local choice
- ▶ Justify usability of our theory by proving (cf. [Hyl81])

$$\big((N\to 2)\to 2\big)\simeq N$$

- ► Extend simplicial aspects
- ► Extend to full Geometric Type Theory

REFERENCES I

Directed aspects of condensed type theory, September 2024.

https://www.youtube.com/watch?v=0elJcaw5NWw.

Ingo Blechschmidt.

The topos-theoretic multiverse: a modal approach for computation.

https://www.speicherleck.de/iblech/stuff/early-draft-modal-multiverse.pdf.

Arthur Commelin.

Condensed type theory, May 2024.

https://www.youtube.com/watch?v=dJtF4P0XVUM.

Martín Escardó.

Synthetic topology: of data types and classical spaces.

Electronic Notes in Theoretical Computer Science, 87:21–156, 2004.

Proceedings of the Workshop on Domain Theoretic Methods for Probabilistic Processes.

Michael P. Fourman.

Continuous truth II: Reflections.

In *Logic, language, information, and computation*, volume 8071 of *Lecture Notes in Comput. Sci.*, pages 153–167. Springer, Heidelberg, 2013.

REFERENCES II

J. M. E. Hyland.

Function spaces in the category of locales.

In Continuous Lattices, volume 871, pages 264–281. Springer Berlin Heidelberg, 1981.

Series Title: Lecture Notes in Mathematics.

Michael Shulman.

Semantics of multimodal adjoint type theory.

In Mathematical Foundations of Programming Semantics—Proceedings of the Thirty-Ninth Annual Conference, volume 3 of Electron. Notes Theor. Inform. Comput. Sci., pages Art. No. 18, 20. Episciences, Villeurbanne, 2023.

Paul Taylor.

Foundations for computable topology.

In Foundational Theories of Classical and Constructive Mathematics, number 76 in Western Ontario Series in Philosophy of Science. Springer-Verlag, January 2011.

Taichi Uemura.

Synthetic topos theory.

https://uemurax.github.io/synthetic-topos-theory.

Steven Vickers.

Locales and toposes as spaces.

In *Handbook of spatial logics*, pages 429–496. Springer, Dordrecht, 2007.

REFERENCES III

Steven Vickers.

A localic theory of lower and upper integrals.

MLQ Math. Log. Q., 54(1):109-123, 2008.