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Abstract. We show that restricting the elimination principle of the natural numbers type
in Martin-Löf Type Theory (MLTT) to a universe of types not containing Π-types ensures
that all definable functions are primitive recursive. This extends the concept of primitive

recursiveness to general types. We discuss extensions to univalent type theories and other
notions of computability. We are inspired by earlier work by Martin Hofmann [18], work on
Joyal’s arithmetic universes [25], and Hugo Herbelin and Ludovic Patey’s sketched Calculus of

Primitive Recursive Constructions [16].
We define a theory Tpr that is a subtheory of MLTT with two universes U0 : U1, such that

all inductive types are finitary and U0 is restricted to not contain Π-types:

⊢ 𝐴 : U𝛼 𝑎 : 𝐴 ⊢ 𝐵(𝑎) : U𝛼

⊢ (𝑎 : 𝐴) → 𝐵(𝑎) : Umax(1,𝛼)

We prove soundness such that all functions ℕ→ ℕ are primitive recursive. The proof requires

that Tpr satisfies canonicity, which we easily prove using synthetic Tait computability [33].

1. Introduction

A primitive recursive function is roughly a numerical algorithm that can be computed using
only (bounded) for-loops. They form a subclass of all computable functions and are commonly
used in proofs of relative consistency results.

Martin-Löf Type Theory (MLTT) is a dependent type theory which can serve as a foundation
for mathematics. The variant we consider features Σ- or dependent pair and Π- or dependent
function types, intensional identity types, basic inductive types and a hierarchy of universes.

The main contribution of this paper is a proof that restricting the elimination principle of the
type of natural numbers to a universe not containing Π-types ensures that all definable terms
𝑛 : N ⊢ 𝑓 (𝑛) : N are primitive recursive functions under their standard interpretation in the topos
Set of sets. In other words, dependent type theory without Π-types is a conservative extension of
primitive recursive arithmetic (PRA). The proof proceeds by gluing the set-model to a certain
sheaf topos of primitive recursive functions.

PRA is often invoked as a base theory for reverse mathematics [32] and work in formal
metatheory [21]. However, this line of work requires a lot of delicate encoding and would be
difficult to mechanize in a proof assistant. Our work aims to alleviate this problem by giving a
subsystem of MLTT (which is itself the basis for many proof assistants, including Agda, Rocq
(née Coq), and Lean), which is conservative over PRA, but is much more expressive (requiring
fewer encodings), and which is directly amenable for mechanization. Eventually, we imagine
that a tool like Agda could feature a --pra flag to ensure that a file only uses constructions
that are conservative over PRA. Since we provide a modular semantics that ensures this, it is
easily possible to extend our syntax with even further conveniences, some of which we discuss
in Section 10.

In Section 2 we recall the basic definitions of primitive recursive functions and their represen-
tation in Cartesian closed categories. In Section 3 we fix notation for the tool that is synthetic
Tait computability (STC).

This is followed by a sketch of concrete syntax and a formal definition of higher order abstract
syntax for our Primitive Recursive Dependent Type Theory (PRTT) in Section 4. We discuss
examples and applications in Section 5.

In Section 6 we define a semantics in the topos of sheaves on a category of arities and primitive
recursive functions equipped with the finite cover topology. This is followed by a proof that
PRTT admits canonical forms in Section 7. The results of those two sections are finally combined
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in Section 8 where we define an interpretation of PRTT in a topos, constructed using Artin
gluing along the interpretations in the sheaf topos and the standard model. We use the glue
topos to show that all PRTT-definable functions are in fact primitive recursive.

A comparison of our results to related work is given in Section 9.
The system PRTT has the downside that while it is complete with respect to primitive

recursive functions, not every primitive recursive function can be encoded in a straightforward
way. We discuss possible extensions using a comonadic modality, an internal universe of codes
for primitive recursive constructions, finitary inductive types and polynomial time computability
akin to Hofmann’s calculi [18, 17] in Section 10. We also consider applications to Cubical Type
Theory and obstructions to the transfer of our techniques to higher topoi.

2. Primitive Recursion

In this section we define primitive recursive functions and explain why one might expect MLTT
with natural numbers but without Π-types to capture exactly primitive recursive functions.

Definition 2.1. The basic primitive recursive functions are constant functions, the successor
function and projections out of finite products of ℕ. A primitive recursive function is obtained
by finite applications of function composition and the primitive recursion operator

(𝑙 : ℕ) → (ℕ𝑙 → ℕ) → (ℕ𝑙+2 → ℕ) → (ℕ𝑙+1 → ℕ)
primrec𝑙𝑔,ℎ (0, 𝑥) = 𝑔(𝑥)

primrec𝑙𝑔,ℎ (𝑛 + 1, 𝑥) = ℎ(𝑛, primrec𝑙𝑔,ℎ (𝑛, 𝑥), 𝑥)
Many functions are primitive recursive. Some examples include addition, exponentiation and

the greatest common divisor. One of the simplest and earliest-discovered examples of a total
computable function which is not primitive recursive is the Ackermann function [1]. A simple
two-argument variant A due to Rózsa Péter is given by

A(0, 𝑛) := 𝑛 + 1
A(𝑚 + 1, 0) := A(𝑚, 1)

A(𝑚 + 1, 𝑛 + 1) := A(𝑚,A(𝑚 + 1, 𝑛))
for non-negative integers 𝑚 and 𝑛. One can show that 𝐴 grows faster than any primitive recursive
function and is therefore not primitive recursive. The explosion in growth is caused by the third
clause, featuring structural recursion targeting the function type ℕ→ ℕ.

We can transfer the notion of primitive recursiveness to morphisms between natural numbers
objects (NNO) in general Cartesian closed categories (CCC) (c.f. [4]).

Definition 2.2. A function 𝑓 : ℕ𝑘 → ℕ is representable in a Cartesian category with weak NNO
N if there is an arrow 𝑓 : N𝑘 → N such that the following square commutes.

ℕ𝑘 ℕ

ΓN𝑘 ΓN

𝑓

num𝑘 num

Γ 𝑓

Here num(𝑛) denotes the 𝑛-th numeral in N and Γ := Hom(𝟙,−) the global sections functor.

The following result gives us a hint what a dependent type theory which is sound and complete
w.r.t. primitive recursion might look like.

Theorem 2.3 ([20, 29, 4]). The primitive recursive functions are exactly the representable
functions in the free Cartesian category with parametrized NNO. The provably total functions of
Peano Arithmetic are exactly the representable functions in the free CCC with weak NNO.

On one hand, induction on natural numbers and products suffice to represent all primitive
recursive functions. On the other hand, if the category has exponentials, more than just the
primitive recursive functions are representable. In other words, when type theory is used as the
internal language of such a category, one would expect the presence or absence of Π-types to
determine whether just primitive recursive or all total recursive functions are definable.
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3. Synthetic Tait Computability

In his PhD Thesis [33], Sterling introduces a synthetic method of constructing logical relations
in order to prove properties such as normalisation for formal systems. The idea is that, given a
left exact functor 𝜌 : T→ S from a theory (qua syntactic category) to a topos, the Artin gluing
G := 𝜌 ↓ S of the extension of 𝜌 along the free cocompletion of T is a topos. This topos comes
equipped with an open immersion 𝑗 : PrT ↩→ G and a closed immersion 𝑖 : S ↩→ G such that
𝜌 = 𝑖∗ ◦ 𝑗∗. The two immersions act on sheaves as

𝑗∗ (𝑋) = (𝑋, id : 𝜌(𝑋) → 𝜌(𝑋))
𝑗∗ (𝑋, 𝜑 : 𝑆 → 𝜌(𝑋)) = 𝑋

𝑖∗ (𝑆) = (𝟙, ! : 𝑆 → 𝜌(𝟙))
𝑖∗ (𝑋, 𝜑 : 𝑆 → 𝜌(𝑋)) = 𝑆.

One obtains an open modality # := 𝑗∗ ◦ 𝑗∗ and a closed modality  := 𝑖∗ ◦ 𝑖∗ on G. Given the
subterminal sheaf

𝜉 := (𝟙, ! : 𝟘→ 𝜌(𝟙)),
one sees that  (𝑋, 𝜑) is given by the pushout of the span

(𝑋, 𝜑) ←
(
(𝑋, 𝜑) × 𝜉

)
→ 𝜉.

This yields an elimination principle for  -modal types, denoted by a try-clause.
One uses the internal language of G to construct a section 𝑠 of the projection 𝑗∗. This section

induces squares

𝑆 𝑆′

𝜌(𝑋) 𝜌(𝑋 ′)
𝜌( 𝑓 )

for terms 𝑓 : 𝑋 → 𝑋 ′ of T. The section is constructed by lifting syntactic objects, internally given
by #-modal types, to larger universes, therby attaching computational information to them.

In order to ensure that 𝑠 is a section up to strict equality rather than isomorphism, one
assumes that the relevant universes are strong, meaning that they satisfy realignment along
monomorphisms. In our exposition we leave realignment mostly implicit.

We adopt Sterling’s notation

{𝐴 | 𝜉 ↩→ 𝑎}
for extent types, that is types whose elements are strictly aligned over some 𝜉-partial element 𝑎.

If 𝜌 is the global sections functor, then one can choose a section which aligns canonical forms
over closed terms and hence proves canonicity for T. We shall employ this technique to prove
canonicity for PRTT in Section 7.

Sterling’s logical framework is a dependent type theory which produces an LCCC T of
judgements given its specification as a total space over the judgement classifier. Such a specification
is typically given using Agda-style record syntax. A complete syntax of the abstract syntax for
our theory is presented in Figure 2.

Furthermore, we construct a model ⟦−⟧R : Tpr → R in a certain topos of sheaves on a site of
primitive recursive functions and form the glue topos along the functor

𝜌 : PrTpr → Set

𝑋 ↦→ Γ(�⟦𝑋⟧R) ×�⟦𝑋⟧Set
(with �⟦−⟧R and �⟦−⟧Set denoting the corresponding Yoneda extensions), in order to prove that
the standard interpretation of a term 𝑛 : N ⊢ 𝑓 (𝑛) : N in Set is indeed primitive recursive.

4. Syntax of Primitive Recursive Dependent Type Theory

We would like to restrict the induction principle of an inductive natural numbers type without
entirely removing dependent products from the theory. To do so we assume a universe U0

containing basic inductive types, which is closed under Σ-types and identity types, but not
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Figure 1. Rules of Tpr.
Rules which differ from standard MLTT. All judgements Δ ⊢ J have an implicit prepended
context Γ.

⊢ U𝛼 type

⊢ 𝐴 : U𝛼

⊢ 𝐴 : U𝛼+1

𝑎 : 𝐴 ⊢ 𝐵(𝑎) type

⊢ (𝑎 : 𝐴) → 𝐵(𝑎) type

⊢ 𝐴 : U𝛼 𝑎 : 𝐴 ⊢ 𝐵(𝑎) : U𝛼

⊢ (𝑎 : 𝐴) → 𝐵(𝑎) : Umax(1,𝛼)

𝑎 : 𝐴 ⊢ 𝑏 (𝑎) : 𝐵(𝑎)
⊢ 𝜆(𝑎 : 𝐴) .𝑏 (𝑎) : (𝑎 : 𝐴) → 𝐵(𝑎)
𝑥 : 𝐴 ⊢ (𝜆(𝑎 : 𝐴) .𝑏 (𝑎) ) (𝑥 ) = 𝑏 (𝑥 ) : 𝐵(𝑥 )

⊢ 𝑓 : (𝑎 : 𝐴) → 𝐵(𝑎)
𝑎 : 𝐴 ⊢ 𝑓 (𝑎) : 𝐵(𝑎)
⊢ 𝜆(𝑎 : 𝐴) . 𝑓 (𝑎) = 𝑓 : (𝑎 : 𝐴) → 𝐵(𝑎)

⊢ N type ⊢ N : U0

⊢ zero : N 𝑛 : N ⊢ succ 𝑛 : N

𝑛 : N ⊢ 𝐶 (𝑛) : U0

⊢ 𝑐zero : 𝐶 (zero)
𝑛 : N, 𝑐 : 𝐶 (𝑛) ⊢ 𝑐succ (𝑛, 𝑐) : 𝐶 (succ 𝑛)

𝑛 : N ⊢ ind𝑐succ ,𝑐zero (𝑛) : 𝐶 (𝑛)
⊢ ind𝑐succ ,𝑐zero (zero) = 𝑐zero : 𝐶 (zero)
𝑛 : N ⊢ ind𝑐succ ,𝑐zero (succ 𝑛) = 𝑐succ (𝑛, ind𝑐succ ,𝑐zero (𝑛) ) : 𝐶 (succ 𝑛)

function types. The elimination principle of the natural numbers N is restricted to type families
in U0.

An illustrative portion of the concrete syntax for PRTT is presented in Fig. 1. Later we shall
only work with its formal account as presented in Fig. 2.

A detailed account of the typical rules of MLTT is given in [27]. The only notable differences
between that system and ours are that Π-formation of a family of types of universe level 0 raises
the level by one, and that the induction principle for the natural numbers produces an open term
𝑛 : N ⊢ ind(𝑛) : 𝐵(𝑛) rather than a function of type (𝑛 : N) → 𝐵(𝑛). So, in addition to the rules
in Figure 1, we assume the standard rules for a reflexive, symmetric and transitive judgemental
equality relation and variable substitution. Additionally, we assume Σ- and identity type closure
for every universe and closure under Π-types for universes U𝛼 with 𝛼 > 0. Note that we do not
assume univalence nor any extensionality principle for propositional equality. The universe levels
𝛼 ≤ 𝛽 ≤ 𝛾 belong to a finite or countable linear order {0 < 1 < . . .}. We denote meta-level Σ- or
dependent pair types by (𝑎 : 𝐴) × 𝐵(𝑎) and Π- or dependent function types by (𝑎 : 𝐴) → 𝐵(𝑎).
We make no distinction between a type 𝐴 and its code 𝐴 : U in a universe, although this is of
course present in the formal account.

The logical framework converts a theory presented as a nested Σ-type in Agda-style record
notation into a locally Cartesian closed (LCC) category of judgements Tpr. For example, □
denotes a judgement classifier and tm𝛼 : tp𝛼 → □ introduces for every type judgement 𝐴 : tp𝛼 a
judgement for its terms. A model of Tpr is an LCC functor ⟦−⟧C : Tpr → C.

One part of the adequacy statement for Tpr is the next theorem. Its counterpart is Theorem 8.4.

Theorem 4.1. The theory Tpr is complete with respect to primitive recursion in the sense that
any primitive recursive function can be defined in it.

Proof. The basic primitive recursive functions are clearly definable using ind. Function composi-
tion is given by substitution. The term ind also covers the recursor primrec𝑙. The extra variables
are absorbed by the context. □

Remark 4.2. The theory Tpr is a subtheory of MLTT. As such, any model for MLTT is a model
for Tpr. This includes any presheaf topos on a small category. In particular, we have a standard
model

⟦−⟧Set : Tpr → Set

in the topos of sets. This model maps the syntactic natural numbers N to the actual natural
numbers ℕ. Below, we argue that any definable function

⟦ 𝑓 ⟧Set : Set(⟦N⟧Set, ⟦N⟧Set)
is actually primitive recursive by gluing along an interpretation of Tpr in a topos of primitive
recursive functions.

Remark 4.3. The calculus Tpr can be amended with a natural numbers type ⊢ N𝛼 : tp𝛼 for 𝛼 > 0
which has an elimination principle for the larger universes also closed under Π-types and which
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Figure 2. Higher Order Abstract Syntax for Tpr.
Curly braces denote implicit arguments. The judgement levels 𝛼 ≤ 𝛽 ≤ 𝛾 range over a finite or
countable linear order {0, . . .}.

record Tpr : SIG where

tp𝛼 : □

tm𝛼 : tp𝛼 → □

⟨↑𝛽𝛼 ⟩ : tp𝛼 → tp𝛽

: {𝐴} → (⟨↑𝛼𝛼 ⟩ 𝐴 =tp𝛼
𝐴)

: {𝐴} → (⟨↑𝛾
𝛽
⟩ ⟨↑𝛽𝛼 ⟩ 𝐴 =tp𝛾

⟨↑𝛾𝛼 ⟩ 𝐴)

: {𝐴} → (tm𝛼 𝐴 =□ tm𝛽 (⟨↑𝛽𝛼 ⟩ 𝐴) )

: {𝐴, 𝐵} → (⟨↑𝛽𝛼 ⟩ 𝐴 =tp𝛽
⟨↑𝛽𝛼 ⟩ 𝐵) → (𝐴 =tp𝛼

𝐵)
Σ𝛼 : (𝐴 : tp𝛼 ) → (𝐵 : tm𝛼 𝐴→ tp𝛼 ) → tp𝛼

pair𝛼 : {𝐴, 𝐵} → ( (𝑎 : tm𝛼 𝐴) × tm𝛼 (𝐵 𝑎) ) � tm𝛼 (Σ𝛼 (𝐴, 𝐵) )

: {𝐴, 𝐵} → ⟨↑𝛽𝛼 ⟩ Σ𝛼 (𝐴, 𝐵) =tp𝛽
Σ𝛽 (⟨↑𝛽𝛼 ⟩ 𝐴, ⟨↑

𝛽
𝛼 ⟩ ◦𝐵)

eq𝛼 : (𝐴 : tp𝛼 ) → (𝑎, 𝑏 : tm𝛼 𝐴) → tp𝛼

refl𝛼 : {𝐴} → (𝑎 : tm𝛼 𝐴) → eq𝛼 (𝑎, 𝑎)
eqind𝛼 : {𝐴, 𝑎} →

(
𝑃 : (𝑏 : tm𝛼 𝐴) → (𝑝 : eq𝛼 (𝑎, 𝑏) ) → tp𝛼 )

)
→ {𝑏, 𝑝} → tm𝛼 (𝑃 (𝑎, refl(𝑎) ) ) → tm𝛼 (𝑃 (𝑏, 𝑝) )

: {𝐴, 𝑎, 𝑃} →
(
𝑠 : tm𝛼 (𝑃 (𝑎, refl𝛼 (𝑎) ) )

)
→

(
𝑠 =tm𝛼 (𝑃 (𝑎,refl𝛼 (𝑎) ) ) eqind𝛼 (𝑃, {𝑎}, {refl𝛼 (𝑎) }, 𝑠)

)
: {𝐴} → ⟨↑𝛽𝛼 ⟩ eq𝛼 (𝐴) =tp𝛽

eq𝛽 (⟨↑
𝛽
𝛼 ⟩ 𝐴)

Π𝛼 : (𝐴 : tp𝛼 ) → (𝐵 : tm𝛼 𝐴→ tp𝛼 ) → tpmax(1,𝛼)
𝜆𝛼 : {𝐴, 𝐵} → ( (𝑥 : tmmax(1,𝛼) (𝐴) ) → tmmax(1,𝛼) (𝐵(𝑥 ) ) ) � tmmax(1,𝛼) (Π (𝐴, 𝐵) )

: {𝐴, 𝐵} → ⟨↑𝛽𝛼 ⟩ Π𝛼 (𝐴, 𝐵) =𝛽 Π𝛽 (⟨↑𝛽𝛼 ⟩ 𝐴, ⟨↑
𝛽
𝛼 ⟩ ◦𝐵) (where 𝛼 > 0)

∅ : tp0

exfalso : (𝐵 : tm0 ∅ → tp0 ) → (𝑥 : tm0 ∅) → tm0 (𝐵 𝑥 )
1 : tp0

★ : tm0 1

unitind : (𝐵 : tm0 1→ tp0 ) → (𝑏 : tm0 (𝐵★) ) → (𝑥 : tm0 1) → tm0 (𝐵 𝑥 )
: {𝐵, 𝑏} → (unitind(𝐵, 𝑏,★) =tm0 (𝐵★) 𝑏)

N : tp0

zero : tm0 N

succ : tm0 N→ tm0 N

ind : (𝐵 : tm0 N→ tp0 )
→ (𝑏zero : tm0 (𝐵 zero) )
→ (𝑏succ : (𝑛 : tm0 N) → tm0 (𝐵 𝑛) → tm0 (𝐵(succ 𝑛) ) )
→ (𝑥 : tm0 N) → tm0 (𝐵 𝑥 )

: {𝐵, 𝑏zero, 𝑏succ} → (ind(𝐵, 𝑏zero, 𝑏succ, zero) =tm0 (𝐵 zero) 𝑏zero )
: {𝐵, 𝑏zero, 𝑏succ, 𝑛} →

(
ind(𝐵, 𝑏zero, 𝑏succ, succ 𝑛) =tm0 (𝐵(succ𝑛) ) 𝑏succ (ind(𝐵, 𝑏zero, 𝑏succ, 𝑛) )

)
U𝛼 : tp𝛼+1

: (tm𝛼+1 U𝛼 =□ tp𝛼 )

is mapped to the natural numbers object in the interpretations above. Initiality gives a coercion
N𝛼 → ⟨↑𝛼0 ⟩N.

5. Examples and Applications

To illustrate how to use Tpr, consider the Cantor Normal Forms for ordinals less than 𝜀, for
instance as developed in [22]. First we can define a (primitive recursive) isomorphism N ≃ 1+N×N,
which allows us to think of numbers as unlabeled binary trees, with a corresponding induction
principle. We write 0 for the element in the left component and 𝜔𝛼 + 𝛽 for elements in the right
component. By recursion, we define the ordering relation < (with values in the booleans 1 + 1)
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such that

0 < 𝜔𝑎 + 𝑏
𝛼 < 𝛾 → 𝜔𝛼 + 𝛽 < 𝜔𝛾 + 𝛿
𝛽 < 𝛿→ 𝜔𝛼 + 𝛽 < 𝜔𝛼 + 𝛿,

and a decidable predicate isCNF such that

isCNF(0)
isCNF(𝛼) → isCNF(𝛽) → left(𝛽) ≤ 𝛼→ isCNF(𝜔𝛼 + 𝛽),

where the function left gives the left subtree if it exists, else 0, and 𝛼 ≤ 𝛽 :≡ (𝛼 < 𝛽 + 𝛼 = 𝛽).
Then Tpr can prove CNF :≡ ∑

𝛼:N isCNF(𝛼) is totally ordered. Of course, by our soundness
result, Tpr cannot prove induction along < on CNF, as this would amount to induction up to 𝜀0.
But using the universe U1, this can at least be stated. If we encode the syntax of arithmetic and
a proof calculus for classical first order logic, we can then prove in Tpr the consistency of Peano
arithmetic (PA) assuming this induction principle.

Likewise, by encoding other finitary inductive type families, it is possible to encode more
complicated ordinal notation systems and the syntax of more complicated foundational systems,
such as type theory itself. It is then possible to define translation functions, for instance the double-
negation translation from PA to Heyting’s arithmetic (HA), forcing translations, realizability
translations, etc. This would be even easier in an extension of Tpr with built-in support for such
finitary inductive type families. We discuss this extension below in Section 10.

6. Semantics in a Topos of Primitive Recursive Functions

This section begins with the construction of a certain sheaf topos R of primitive recursive
functions. The remainder of this section is dedicated to the proof of the following result.

Theorem 6.1. There is a sound interpretation

⟦−⟧R : Tpr → R
satisfying

⟦N⟧R = yN .

Here y is the Yoneda embedding, and N is a designated object in the site, as explained below.
The topos R has the property that morphisms

R(⟦N⟧R , ⟦N⟧R)
are exactly primitive recursive functions ℕ → ℕ, which forms a cornerstone of our gluing
argument. The sheaf ⟦N⟧R is a (non-initial) natural numbers algebra yN and ⟦U0⟧R is described

as a type Ûpr
0 of types 𝑋 with a retraction 𝑟 : yN → 𝑋 + 𝟙. To show that Ûpr

0 contains the basic
inductive types we need show that the sheafification of the presheaf 𝟚 is a retract of yN. We
prove soundness of the elimination principle of N into 𝑋 by encoding terms 𝑥 : 𝑋 as numbers
𝑠(𝑥) : yN via the section 𝑠 of 𝑟. The interpretation of the other type formers and higher universes
is standard.

In this section we fix a primitive recursive bijection with primitive recursive inverse of type
ℕ→ ℕ ×ℕ.

6.2. A Sheaf Topos of Primitive Recursive Functions. We begin with the definition of a
Grothendieck topology on a category R of arities and primitive recursive functions.

Definition 6.3. The category R has two objects 1 and N, related by morphisms R(N,N), the
primitive recursive functions of type ℕ→ ℕ, and R(1,N) := ℕ. The object 1 is terminal. We
sometimes write N0 instead of 1.

Lemma 6.4. The category R has finite products. It does not have all finite limits.

Proof. We have that N ×N � N in R. However, the cospan

𝜆 .0 : N→ N← N : 𝜆 .1

cannot be completed to a square in R. □
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Remark 6.5. The category R is equivalent to the category R′ with countably many objects N𝑙,
and morphisms R′ (𝑚, 𝑛) primitive recursive functions ℕ𝑚 → ℕ𝑛. This is the Lawvere theory for
primitive recursion. It is analogous to the category P of arities and polytime functions in [18],
where it is used to proof soundness of a caluculus of polytime functions.

We define a Grothendieck topology on R because the topos PrR of presheaves on R does not
have the desired structure, see Remark 6.15.

Lemma 6.6. For primitive recursive 𝑓 : ℕ𝑛 → ℕ and 𝑔 : ℕ𝑚 → ℕ, the set

{ 𝑓 = 𝑔} := {(𝑥, 𝑦) ∈ ℕ𝑛 ×ℕ𝑚 | 𝑓 𝑥 = 𝑔𝑦}
is decidable. This means that there is a primitive recursive function

𝜒{ 𝑓 =𝑔} : ℕ
𝑛+𝑚 → ℕ

such that 𝜒{ 𝑓 =𝑔} (𝑥) = 1 ⇔ 𝑥 ∈ { 𝑓 = 𝑔} and 𝜒{ 𝑓 =𝑔} (𝑥) = 0 ⇔ 𝑥 ∉ { 𝑓 = 𝑔}. Furthermore,
complements and intersections of decidable subsets are decidable.

Proof. Use
𝜒{ 𝑓 =𝑔} (𝑥, 𝑦) = 1 − sgn(max( 𝑓 𝑥, 𝑔𝑦) −min( 𝑓 𝑥, 𝑔𝑦)),

where sgn 0 = 0 and sgn(𝑛 + 1) = 1. □

Lemma 6.7. Let Jfin be the Grothendieck topology on R generated by the basis Bfin consisting
of finite jointly surjective families. This means that a family of morphisms { 𝑓𝑖 : N𝑛𝑖 → N} with
𝑛𝑖 ∈ {0, 1} is basic iff it is finite and the induced map out of the coproduct in Set is surjective.

Proof. We show that Jfin is indeed a basis. It is clear that isomorphisms define basic covers and
that families of composites of basic covering families are basic covers as well. We need to check
that if { 𝑓𝑖} ∈ Bfin (N), then for any 𝑔 : R(N,N) there exists a basic cover {ℎ 𝑗 } ∈ Bfin (N) such that
for each 𝑗 , the morphism 𝑔 ◦ ℎ 𝑗 factors through some 𝑓𝑖. Covers of 1 are trivial and singletons
1→ N can be replaced by constant maps N→ N. Let

𝑆𝑖 := { 𝑓𝑖 = 𝑔 ∧ 𝑓1 ≠ 𝑔 ∧ · · · ∧ 𝑓𝑖−1 ≠ 𝑔}.
Then the 𝑆𝑖 cover ℕ and are pairwise disjoint. For every finite, non-empty 𝑆𝑖 define finitely
many ℎ𝑖, 𝑗 : 1→ N picking out the elements of 𝑆𝑖. For every infinite 𝑆𝑘 define an enumeration
ℎ′
𝑘
: N→ N factoring through 𝑆𝑘 . Clearly, for each 𝑖, 𝑘 and 𝑗 we have 𝑓𝑖 = 𝑔 ◦ ℎ𝑖, 𝑗 and 𝑓𝑘 = 𝑔 ◦ ℎ′

𝑘
,

and the ℎ𝑖, 𝑗 and ℎ′
𝑘
together cover N. □

We denote the sheaf topos as follows:

R := Sh(R, Jfin)
The topology Jfin is subcanonical, so yN is a sheaf and

R(yN, yN) � R(N,N).
Just like any Grothendieck topos, R has a natural numbers object ℕ.

Theorem 6.8. The representable sheaf yN is not a natural numbers object in PrR nor in R.

Proof. There are two ways to see this. One is that, if yN � ℕ were true, then the Ackermann
function would be representable and hence primitive recursive.

Alternatively, assume there were a natural transformation 𝛼 making the square

yN yN

ℕ ℕ

succ

𝛼 𝛼

+1

commute. By the Yoneda lemma, there is a number 𝑛 such that at component 𝑘, 𝛼 acts as

𝛼𝑛 (𝑘) ( 𝑓 ) = ℕ( 𝑓 ) (𝑛) = idℕ (𝑛) = 𝑛,

where 𝑓 : ℕ𝑘 → ℕ is primitive recursive. Chasing 𝑘 : yN along both legs of the square above, we
get the contradiction

𝛼𝑛 (𝑘) + 1 = 𝑛 + 1 ≠ 𝑛 = 𝛼𝑛 (succ(𝑘)). □
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6.9. Universes. Let us have a look at some candidates for ⟦U0⟧R .

Definition 6.10. We assume strong cumulative universes U0 < U1 in R and define the universes

Upr
0 , Ûpr

0 and Ucpr
0 . We have the types (as defined in the internal language)

Upr
0 :=(𝑋 : U0)

×
(
(𝑔 : 𝑋)
→ (ℎ : yN → 𝑋 → 𝑋)

→
(
( 𝑓 : yN → 𝑋) × comp( 𝑓 , 𝑔, ℎ)

) )
and

Ucpr
0 := (𝑋 : U0) ×

(
(Γ : U0)
→ (𝑔 : Γ→ 𝑋)
→ (ℎ : Γ→ yN → 𝑋 → 𝑋)
→

(
( 𝑓 : Γ→ yN → 𝑋)

× ((𝛾 : Γ) → comp( 𝑓 𝛾 , 𝑔𝛾 , ℎ𝛾))
) )

with

comp( 𝑓 , 𝑔, ℎ) :=( 𝑓 (zero) = 𝑔)
×
(
(𝑛 : yN) → ( 𝑓 (succ 𝑛) = ℎ(𝑛, 𝑓 𝑛))

)
.

We also have the object

Ûpr
0 :=(𝑋 : U0) × (𝑟 : yN → (𝑋 + 𝟙))

× (𝑠 : (𝑋 + 𝟙) → yN) × (𝑟 ◦ 𝑠 = id𝑋+𝟙)
of types 𝑋 together with a retraction yN → 𝑋 + 𝟙.

The universe Upr
0 consists of the U0-small types which N can eliminate into. The variant

Ucpr
0 captures yN as a parametrised natural numbers algebra by introducing an arbitrary context

Γ. Ideally, we would like to put ⟦U0⟧R := Upr
0 , but we were unable to prove that Upr

0 is closed
under Σ-types. The same problem holds for Ucpr

0 . Instead, we define

⟦U0⟧R := Ûpr
0

and use coercions
Ûpr

0 →U
pr
0 ↔U

cpr
0

to show that functions yN → 𝑋 with 𝑋 : Ûpr
0 can be defined by induction.

Lemma 6.11. There is a retraction 𝜙 : Ucpr
0 →Upr

0 forgetting the context Γ and preserving the
base type 𝑋.

Proof. Correctness of 𝜙 is trivial. To see that 𝜙 has a section, assume an elimination principle
without context into 𝑋, together with terms 𝑔 : Γ→ 𝑋 and ℎ : Γ→ yN → 𝑋 → 𝑋. Then we can
absorb Γ into the context; for every 𝛾 : Γ we get a map 𝑓 𝛾 : 𝑁 → 𝑋, i.e., an appropriate term of
type Γ→ yN → 𝑋. □

6.12. Finite Types in the Universes. We show that Ûpr
0 contains the sheafifications of the

constant presheaves 𝟘 and 𝟙. The section 𝑠 allows us to encode elements of 𝑋 as elements of
yN, while the retraction is the corresponding decoding. The summand 𝟙 serves to allow 𝑋 to be
empty.

Lemma 6.13. 𝟘 : Ûpr
0 .

Proof. There is exactly one map 𝑟𝟘 : yN → (𝟘 + 𝟙) given by 𝑛 ↦→ inr★. Any element of ℕ yields a
section via the Yoneda embedding. □

Lemma 6.14. The sheafification 𝟚+ of 𝟚 is a retract of yN in R. In other words, 𝟙 : Ûpr
0 .
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Proof. We first remark that 𝟚 is separated, because no object of the site N is covered by the
empty family. Therefore, the +-construction only needs to be applied once.

An element of 𝟚+ (N) is an equivalence class of matching families

{𝑥 𝑓 ∈ 𝟚 | 𝑓 : ℕ→ N ∈ 𝑃}

for some cover 𝑃 ∈ Jfin (N) satisfying
𝑥 𝑓 ◦𝑔 = 𝑥 𝑓

for all 𝑔 : N𝑙 → N. Here two such matching families {𝑥 𝑓 | 𝑓 ∈ 𝑃} and {𝑦𝑔 | 𝑔 ∈ 𝑄} are equivalent
when there is a common refinement 𝑇 ⊂ 𝑃 ∩𝑄 with 𝑇 ∈ Jfin (N) such that 𝑥 𝑓 = 𝑦 𝑓 for all 𝑓 ∈ 𝑇 .
By a similar construction as the one used to obtain the disjoint 𝑆𝑖 in the proof of Lemma 6.7,
each matching family is completely determined by finitely many

{𝑥𝑔 𝑗
}𝑚𝑗=1

where {𝑔 𝑗 } is a finite, jointly surjective, disjoint family of morphisms with domain and codomain
N. In fact, we can collect all of the 𝑔 𝑗 where 𝑥𝑔 𝑗

= 0, and similarly for 𝑥𝑔 𝑗
= 1 to obtain an

equivalent matching family {0, 1} on two morphisms.1

The action of 𝟚+ on a morphism 𝜑 : N→ N restricts a matching family {𝑥 𝑓 } to its pullback
along 𝜑. This restriction does not change the value of any individual 𝑥 𝑓 .

By the Yoneda lemma,

R(yN, 𝟚+) � PrR(yN, 𝟚+) � 𝟚+ (1).

Under above isomorphism, an element 𝑢 ∈ 𝟚+ (1) is sent to the natural transformation, here
denoted 𝑟𝑢, which at component 𝑚 ∈ {0, 1} is given by

𝑟𝑢 (𝑚) : (N𝑚 → N) → 𝟚+ (𝑚)
𝜑 ↦→ 𝟚+ (𝜑) (𝑢).

We need to find an equivalence class of matching families 𝑢, and a natural transformation 𝑠 with
components

𝑠𝑚 : 𝟚+ (𝑚) → (N𝑚 → N)

such that for all 𝑥 ∈ 𝟚+ (𝑚),
𝟚+ (𝑠𝑚 (𝑥)) (𝑢) = 𝑥,

natural in 𝑚. Because sheafification is a reflective localization, 𝑠 is completely determined by a
map �̃� : 𝟚→ yN, and �̃� = 𝑠 ◦ 𝜂𝟚. By the universal property of 𝟚 = 𝟙 +PrR 𝟙, 𝑠 is determined by
two global sections of yN. Let us choose the constant functions 𝑐0 and 𝑐1.

For our retraction we use the cover of N generated by · 2, · 2 + 1 : N→ N and the matching
family 𝑢 with value a ∈ 𝟚 on · 2 and b on the other map. If we denote the two global sections of
𝟚 by a and b, we need to show

𝟚+ (𝑐0) (𝑢) = a and 𝟚+ (𝑐1) (𝑢) = b.

It is easy to see that the pullback 𝑐∗𝑛 (𝑆) of any Jfin-sieve 𝑆 on N along a constant function
𝑐𝑛 : N → N is the maximal sieve on N. Since the restriction maps 𝟚+ ( 𝑓 ) are locally (on each
component of the equivalence class of) the matching family given by identity functions, it follows
that the desired equations hold. □

Remark 6.15. The reason we work in the topos R rather than PrR is that 𝟚 is not a retract of
yN in PrR, because retracts of representables in presheaf categories are tiny, but the endofunctor
𝑋 ↦→ 𝑋 × 𝑋 on PrR does not preserve colimits.

1That is true if not all sections are 0, or 1. Otherwise, we get a singleton matching family {0} or {1}.
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6.16. yN-elimination. In this subsection we show that yN-retracts satisfy the elimination
principle ind in several steps.

Lemma 6.17. The representable sheaf yN is in Upr
0 .

Proof. We show the result for the equivalent category R′ from Remark 6.5. Note that for any
𝐹 : PrR and 𝑙 ∈ ℕ,

(yN ⇒ 𝐹) (N𝑙) � PrR(yN × yN𝑙 , 𝐹) � 𝐹 (N𝑙+1).
We define the presheaf 𝐹+ by 𝐹+ (N𝑙) := 𝐹 (N𝑙+1). It follows that

PrR(y1, yN → (yN → yN → yN) → yN → yN)
�PrR(yN × y++N × yN, yN)

We can define such a natural transformation which at component 𝑙 is of type

(N𝑙 → N) × (N𝑙+2 → N) × (N𝑙 → N) → (N𝑙 → N)
and given by

(𝑔, ℎ, 𝑛) ↦→ 𝜆 𝑥.primrec𝑙𝑔,ℎ (𝑛(𝑥), 𝑥).
The computation rules are easy to verify. □

Lemma 6.18. The sheaf 𝟚+ satisfies the contextual elimination principle, i.e., 𝟚+ : Ucpr
0 .

Proof. By Lemma 6.11 it suffices to show that 𝟚+ : Upr
0 . Let (𝟚+, 𝑟, 𝑠, 𝑝) be a retraction as

constructed in Lemma 6.14, 𝑔 : 𝟚+, and ℎ : yN → 𝟚+ → 𝟚+. We define

𝑔 := 𝑠(𝑔) : yN
and

ℎ̃ : yN → yN → yN

ℎ̃(𝑛, 𝑥) := 𝑠ℎ(𝑛, 𝑟𝑥).
By yN-induction (c.f. Lemma 6.17) we get

𝑓 : yN → yN

𝑓 (0) = 𝑠(𝑔)
𝑓 (succ(𝑛)) = 𝑠ℎ(𝑛, 𝑟 𝑓 𝑥).

We define the desired morphism 𝑓 := 𝑟 ◦ 𝑓 . Then

𝑓 (0) = 𝑟𝑠𝑔 = 𝑔

and

𝑓 (succ 𝑛) = 𝑟𝑠ℎ(𝑛, 𝑟 𝑓 𝑛) = ℎ(𝑛, 𝑓 𝑛)
for all 𝑛 : yN. □

Remark 6.19. The construction of Lemma 6.18 works for any type 𝑋 with retraction yN → 𝑋. The
difficult part is proving that a retraction yN → 𝑋 + 𝟙 gives 𝑋 : Upr

0 , and contextual elimination
into 𝟚+ suffices to prove that, see below.

Lemma 6.20. The predecessor function ypred is a section of the successor function viewed as

succ : yN → (𝑛 : yN) × (𝑛 ≠ 0).
This is true in PrR and R.

Proof. We prove the result for PrR first. We cannot yet use induction on yN. Let 𝑛 : 𝑍 → yN
such that 𝑛 ≠ 0. We show that succ(ypred 𝑛) = 𝑛 so that function extensionality yields the
result. We may assume that 𝑍 is representable (cf. [23, III.6 and VI.7]). Then the result follows
immediately from the Yoneda lemma.

Because the Jfin is subcanonical, application of sheafification to above identity implies the
result for R. □

Lemma 6.21. yN : Ûpr
0



PRIMITIVE RECURSIVE DEPENDENT TYPE THEORY 11

Proof. We inductively define

𝑠 : yN +𝟙→ yN

𝑛 ↦→ succ 𝑛

★ ↦→ 0.

By case distinction we get a map

𝑟 : yN → yN +𝟙

𝑛 ↦→
{
★, (𝑛 = 0)
ypred 𝑛, (𝑛 ≠ 0).

There is no induction needed to verify that 𝑠 is a section of 𝑟. □

Lemma 6.22. yN has decidable equality in R.

Proof. It suffices to decide 𝑛 =yN
0. We inductively define (cf. Lemma 6.18)

𝜋 : yN → 𝟚

0 ↦→ 0

succ 𝑛 ↦→ 1

and

𝜑 : yN → 𝟚→ yN

𝜑𝑛 (0) := 0

𝜑𝑛 (1) := 𝑛.

Decidability of 𝜋(𝑛) =𝟚 0 and the identities

𝜑𝑛 (𝜋 0) = 0 and 𝜑𝑛 (𝜋 𝑛) = 𝑛

can be used to decide 𝑛 =yN
0. □

Theorem 6.23. There is a map

Φ : Ûpr
0 →U

pr
0

preserving underlying types.

Proof. Let (𝑋, 𝑟, 𝑠, 𝑝) : Ûpr
0 , 𝑔 : 𝑋 and ℎ : yN → 𝑋 → 𝑋. We inductively (Lemma 6.17) define a

helper function 𝑓 : yN → yN with initial value

𝑔 := 𝑠𝑔

and step function

ℎ̃ : yN → yN → yN

ℎ̃(𝑛, 𝑥) :=
{
𝑠ℎ(𝑛, 𝑟𝑥), (𝑟𝑥 : 𝑋)
𝑠𝑔, (𝑟𝑥 = ★).

Then, we define

𝑓 : yN → 𝑋

𝑓 (𝑛) :=
{
𝑟 𝑓 𝑛, (𝑟 𝑓 𝑛 : 𝑋)
𝑔, (𝑟 𝑓 𝑛 = ★).

We verify the computation rules of this 𝑓 . We clearly have that 𝑓 (0) = 𝑟𝑠𝑔 = 𝑔. It is also true
that

𝑓 (succ 𝑛) = 𝑟 ( 𝑓 (succ 𝑛)) = 𝑟𝑠ℎ(𝑛, 𝑟 𝑓 𝑛) = ℎ(𝑛, 𝑓 𝑛),
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if 𝑟 ( 𝑓 (succ 𝑛)) : 𝑋. Otherwise, this equality does not necessarily hold, so we need to show that
(𝑛 : yN) → (𝑥 : 𝑋) × (𝑟 𝑓 (succ 𝑛) = 𝑥). This 𝑥 is of course given by ℎ(𝑛, 𝑟 ( 𝑓 𝑛)), but we don’t have
a suitable induction principle to show this. Instead, we prove that there is a lift

𝑋

yN 𝑋 + 𝟙.
inl

𝑟◦ 𝑓

Since

𝑋 𝟙

𝑋 + 𝟙 𝟙 + 𝟙

!

inl inl

⟨!𝑋 ,!𝟙 ⟩

is a pullback square, it suffices to show that for any 𝑛 : 𝑍 → yN there is a lift

𝟙

𝑍 𝟙 + 𝟙.
inl

⟨!𝑋 ,!𝟙 ⟩𝑟 𝑓 𝑛

Switching back to type theoretic language, we have to show that

⟨!𝑋, !𝟙⟩𝑟 ( 𝑓 𝑛) = inl★.

If 𝑛 = 0, then
⟨!𝑋, !𝟙⟩𝑟 ( 𝑓 0) = ⟨!𝑋, !𝟙⟩𝑟𝑠𝑔 = ⟨!𝑋, !𝟙⟩𝑔 = inl★.

Otherwise, 𝑛 = succ(ypred 𝑛), and we compute

⟨!𝑋, !𝟙⟩𝑟 𝑓 (succ(ypred 𝑛)) = ⟨!𝑋, !𝟙⟩𝑟 ℎ̃(𝑛, 𝑓 (succ(ypred 𝑛))).
There we need to make a case distinction for whether

𝑟 𝑓 (succ(ypred 𝑛)) : 𝑋.
However, in both cases the right hand side reduces to inl★. □

Theorem 6.23 gives us the non-dependent elimination principle for yN. The dependent one for

a family of types in Ûpr
0 can be deduced by taking the Σ-type, as we explain below.

6.24. Closure Under Σ- and Identity Types. In this section we show that the interpretation
of Σ- and identity types is sound.

Lemma 6.25. The universe Ûpr
0 is closed under Σ-types.

Proof. Assume we have 𝐴 = (𝐴, 𝑟, 𝑠, 𝑝) : Ûpr
0 , and 𝐵(𝑎) = (𝐵(𝑎), 𝑟𝑎, 𝑠𝑎, 𝑝𝑎) : Ûpr

0 given 𝑎 : 𝐴.
Then

yN × yN → (𝑎 : 𝐴) × 𝐵(𝑎)
(𝑚, 𝑛) ↦→ (𝑟 𝑚, 𝑟𝑟 𝑚 𝑛)

has right inverse the map

(𝑎 : 𝐴) × 𝐵(𝑎) → yN × yN
(𝑎, 𝑏) ↦→ (𝑠 𝑎, 𝑠𝑎 𝑏).

We have a composite retraction

yN → yN × yN → (𝑎 : 𝐴) × 𝐵(𝑎). □

Lemma 6.26. Ûpr
0 is closed under identity types of terms.

Proof. Assume we have 𝑋 = (𝑋, 𝑟, 𝑠, 𝑝) : Ûpr
0 and 𝑥, 𝑦 : 𝑋. We shall define a retraction 𝑟 ′ :

yN → (𝑥 =𝑋 𝑦) + 𝟙 with section 𝑠′. By application of 𝑟, the type (𝑥 =𝑋 𝑦) + 𝟙 is a retract of
(𝑠(𝑥) =yN

𝑠(𝑦))+𝟙. If 𝑠(𝑥) =yN
𝑠(𝑦), then (𝑠(𝑥) =yN

𝑠(𝑦))+𝟙 ≃ 𝟚. Otherwise, (𝑠(𝑥) =yN
𝑠(𝑦))+𝟙 ≃ 𝟙.

In both cases we have a retraction 𝑟 ′ of the desired type. □
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Figure 3. Lifted Syntax for Canonicity

N∗ : {tp∗ | 𝜉 ↩→ N}
N∗ := (N, Σsyn:tm0 N (Σ𝑛:ℕ (syn = succ𝑛 zero) ) )

zero∗ : {tm∗ (N∗ ) | 𝜉 ↩→ (zero, ★) }
zero∗ := (zero, 𝜂 (0, ★) )
succ∗ : {tm∗ (N∗ ) → tm∗ (N∗ ) | 𝜉 ↩→ (succ, 𝜆 .★) }

succ∗ (syn, sem) : {Σsyn:tm0 N (Σ𝑛:ℕ (syn = succ𝑛 zero) ) | 𝜉 ↩→ (succ(syn) , ★) }
succ∗ (syn, sem) := try sem [𝛼 | 𝜉 ↩→ (succ(syn) , ★) ]

where

𝛼 : Σ𝑛:ℕ (syn = succ𝑛 zero)

→ {Σsyn′:tm0 N Σ𝑛:ℕ (syn′ = succ𝑛+1 zero) | 𝜉 ↩→ (succ(syn) , ★) }
𝛼(𝑛, 𝑝) = (succ(syn) , 𝜂 (𝑛 + 1, appsucc (𝑝) ) )

ind∗ : { (𝐶 : N∗ → tp∗ )
→ (𝑐zero : 𝐶 (zero) )
→ (𝑐succ : (𝑛 : N∗ ) → 𝐶 (𝑛) → 𝐶 (succ 𝑛) )
→ (syn : N∗ )
→ 𝐶 (syn) ) | 𝜉 ↩→ ind}

ind∗ (𝐶, 𝑐zero, 𝑐succ, 𝑥 ) := try syn.sem[𝛽 | 𝜉 ↩→ ind(𝐶, 𝑐zero, 𝑐succ, syn) ]
where

𝛽 : Σ𝑛:ℕ (syn = succ𝑛 zero) → {𝐶 (syn) | 𝜉 ↩→ ind(𝐶, 𝑐zero, 𝑐succ, syn) }

𝛽 :=

{
(0, ) ↦→ 𝑐zero

(𝑚 + 1, ) ↦→ 𝑐succ (succ𝑚 zero, 𝛽 (𝑚, refl) )

Since (𝑥 =𝑋 𝑦) denotes strict equality in R, identity induction and its computation rules hold
as well.

7. Canonicity

In this section we use synthetic Tait computability to prove canonicity for Tpr. We remark
that this result does not immediately follow from [33, § 4.5.3], because the type theory presented
there does not contain a type of natural numbers. Other than that, the strategy of the proof is
exactly analogous in that we lift the syntax from a strong #-modal universe to a larger, strong
one. Since liftings of ‘negative’ types such as Π-, Σ- and identity types is trivial, we shall not
repeat their definitions here.

Theorem 7.1. Let 𝑚 : 1→ tm0 (N) : Tpr be a closed term of natural numbers type; then there
exists an 𝑛 : ℕ such that 𝑚 = succ𝑛 zero, meant as a statement about global elements in Set.

Proof. Form the glue topos G along the left exact global sections functor Γ : PrTpr → Set. Using
the natural numbers object ℕ of G, we lift N, zero, succ and ind. The computation rules for ind∗

follow from the ones for ind.
We remark that the partial elements (succ syn, ★) appearing in the extent types and try

statements have an implicit 𝜆 𝑧 : 𝜉 in front. The definition of 𝛼 is valid, because

𝑧 : 𝜉 ⊢ 𝜂\𝜉 (𝑛 + 1, appsucc (𝑝)) = ★ :  (. . .).
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A term 𝑚 : 𝟙PrTpr
→ tm0 N lifts to 𝑚∗ : {𝟙G → tm∗ (N∗) | 𝜉 ↩→ 𝑚}. Unfolding the definition,

we have a global element of  (Σ𝑛:ℕ (𝑚 = succ𝑛 zero)). This computes as follows.

HomG (1G , (Σ𝑛:ℕ (𝑚 = succ𝑛 zero)))
=HomG (1G , 𝑖∗𝑖∗ (Σ𝑛:ℕ (𝑚 = succ𝑛 zero))) (by definition)

�HomSet (1Set, 𝑖∗ (Σ𝑛:ℕ (𝑚 = succ𝑛 zero))) (𝑖∗ lex)

�HomSet (1Set, Σ𝑛:ℕ𝑖
∗ (𝑚 = succ𝑛 zero)) (𝑖∗ cocont.)

�HomSet (1Set, Σ𝑛:ℕ (𝑖∗ (𝑚) = 𝑖∗ (succ𝑛 zero))) (𝑖∗ lex)

=HomSet (1Set, Σ𝑛:ℕ (𝑚 = succ𝑛 zero))

The last step is true, because 𝑚 above is actually 𝑗∗ (y𝑚)) and so 𝑖∗ ( 𝑗∗ (y𝑚)) = Γy𝑚 = 𝑚. □

8. Soundness for Primitive Recursion

In this section we use a synthetic gluing argument to show that the set-theoretical interpretation
of functions actually coincides with the primitive recursive one. The interpretations ⟦−⟧Set and
⟦−⟧R are LCC functors. Hence, they extend to left exact functors �⟦−⟧R and �⟦−⟧Set along their
Yoneda embedding. It follows that we have a left exact extension

𝜌 := Γ(�⟦−⟧R) × �⟦−⟧Set : PrTpr → Set

and the comma category G := Set ↓ 𝜌 is a topos.

Definition 8.1. For the universe U0 : ¤U0 → U0 in Tpr we define the morphism

⟦U0⟧G : ⟦ ¤U0⟧G → ⟦U0⟧G
in G by the square

Γ( ¤U0) Γ(U0)

𝜌( ¤U0) 𝜌(U0),

Γ (U)

⟦ ¤U0⟧G ⟦U0⟧G

𝜌(U)

where the vertical arrows are each given by the ‘diagonal’

𝑥 ↦→ (Γ(�⟦𝑥⟧R), �⟦𝑥⟧Set).
Lemma 8.2. The map ⟦U0⟧G is a universe for objects Γ(𝑋) → 𝜌(𝑋) given by the same diagonal
as above.

Proof. A pullback square

¤𝑋 ¤U0

𝑋 U0,

U

induces a square

Γ( ¤𝑋) Γ(U)

𝜌(𝑋) 𝜌(U0)
⟦U0⟧G

in G. Because 𝜌 and Γ preserve pullbacks, the top and bottom sides of the corresponding cube of
sets are pullbacks, too. It follows that the square is a pullback in G as well. Realignment follows
from realignment of the universes in R and Set. □

Theorem 8.3. There is a sound interpretation ⟦−⟧G : Tpr → G.
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Proof. The interpretation of the type and term judgements needs to be defined first. In [33,
Section 4.4], Sterling defines a general way of lifting a syntactic model, that is an object of
#⟦U0⟧G to a computability model along a hierarchy of strong universes ⟦U0⟧G ≤ V ≤ W. The
larger universes are assumed to be closed under Π-types.

We use the same lifting of type and term judgements and refrain from repeating it here, to
keep the focus on the recursion principle.

The interpretation ⟦U0⟧G of the universe U0 is defined in the previous lemma. It is clearly
aligned over U0. It inherits its closure under Σ- and identity types. Since U0 is not closed under
Π-types, it is not an issue that Γ might not preserve them.

We put

⟦N⟧G : Γ(N) → 𝜌(N)
to be the same ‘diagonal’ as above, aligned over N.

By soundness of the interpretations ⟦−⟧R and ⟦−⟧Set, any syntactic term 𝑓 : N→ 𝑋 yields a
filler

Γ(N) Γ(𝑋)

𝜌(𝑁) 𝜌(𝑋).

⟦N⟧G

Γ ( 𝑓 )

⟦𝑋⟧G

𝜌( 𝑓 )

This shows that the obvious interpretations of succ and non-dependent ind are sound as well.
The dependent elimination principle for N follows from the non-dependent one by eliminating
into and projecting from the total space of the type family.

The hierarchy of universes and Π-types can be lifted in the same way as described in [33]. □

Theorem 8.4. All Tpr-definable functions between the natural numbers are primitive recursive.
To be precise, for any term

𝑛 : N ⊢ 𝑓 (𝑛) : N
in Tpr the function ⟦𝜆(𝑛 : 𝑁). 𝑓 (𝑛)⟧Set is primitive recursive.

Proof. We made sure that the model ⟦−⟧ G is aligned over Tpr. In other words, we have defined
a structure-preserving section of the projection G → PrTpr. Hence, the assumed closed term is
interpreted into the computability algebra as a global element

𝑓 ∗ : 1G → {tm∗ (N→ N)∗) | 𝜉 ↩→ 𝜆(𝑛 : 𝑁). 𝑓 (𝑛)}.
Unfolding the definitions, we get a commutative square

Γ(N) Γ(N)

Γ(y1) ×ℕ Γ(y1) ×ℕ.

⟦N⟧G

Γ ( 𝑓 )

⟦N⟧G

Γ (�⟦ 𝑓 ⟧R )×�⟦ 𝑓 ⟧Set
By canonicity, we have that Γ(N) � ℕ. It is also true that Γ(yN) � ℕ. This implies

commutativity of the diagram

ℕ ℕ

Γ(yN) Γ(yN).

⟦ 𝑓 ⟧Set

∼ ∼

Γ (⟦ 𝑓 ⟧R )

Here Γ(⟦ 𝑓 ⟧R) is primitive recursive. In other words, the set-theoretic interpretation of 𝑓 is in
fact a primitive recursive function. □

Remark 8.5. Usually, when proving theorems about all open terms, such as normalisation, one
has to use a figure shape to determine which judgements are contexts. In the previous theorem
we were able to avoid a more complex gluing situation by interpreting the 𝜆-abstraction of 𝑓 and
converting the global section of the exponential back to a morphism.
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9. Related Work

The novel contribution of this work is the conservativity of primitive recursion with respect to
dependent types with a full proof of soundness and canonicity.

Previously, Herbelin and Patey sketched a similar system [16], the Calculus of Primitive
Recursive Constructions. It is a subsystem of the Calculus of Inductive Constructions which is
also conservative over Primitive Recursive Arithmetic. The proposed soundness proof is similar
in spirit, encoding types as primitive recursively decidable predicates on ℕ. However, this simple
soundness proof doesn’t work with extensions to types in U1, where we have function types,
which are crucial for expressivity (even if they cannot be the target of inductions). Our system
leverages the full power of dependent type theory, and is also closer to the syntax used in proof
assistants such as Agda.

An extension of MLTT by additional recursion operators for well-founded relations has been
studied by Paulson (c.f. [26]). In recursion theory one often considers partial recursive functions.
These have been studied in the context of type theory as well. In [6, 9, 8, 10] the authors use
an inductive domain predicate that characterises the inputs on which a function terminates.
Alternative approaches such as [7, 11] associate to each data type a coinductive type of partial
elements. Variants of these systems have been designed for use in proof assistants (c.f. [13]).

Our system Tpr is an extension of simply typed lambda calculus to full dependent type theory,
potentially enhanced using a comonadic modality. One important intermediate system is the
modal lambda calculus defined in [14] in order to give a formal account of staged computation
and it is a precursor to [17].

10. Conclusion and Future Work

We have shown that constructions in depedendent type theory that use elimination out of the
natural numbers into universes without Π-types are primitive recursive in nature. We discuss
how the system can be further conservatively extended.

A benefit of our semantic approach is that extensions can be modularly added as long as
they can be interpreted in R and G. The only drawback is that such interpretations are rather
involved and use a mixture of dependent type theory (in the internal language) mixed with
external reasoning about sheaves.

We expect that finitary inductive types such as lists, as well as finitary inductive type families
and even small finitary induction-recursion, can be conservatively added to the calculus. This
will greatly facilitate the practical mechanization of metatheory.

One could add another primitive recursive universe Û0 : tp0 with tm0 Û0 = tm0 U0, yielding
a code u0 : tm0 (U0) for all types tp0. One does not run into Girard’s paradox due to the lack
of function types. For this, however, we need to go beyond retracts of yN, to something like
Σ0
1-definable types in R. A weaker version of this primitive recursive universe of codes is already

definable internally by using a primitive recursive Gödel encoding of the codes tm0 U0. However,
its usefulness is uncertain because its codes only give tp0-types up to equivalence rather than
judgemental equality.

It might be possible to overcome the inconvenience of not being able to define certain functions
out of the natural numbers in a natural way by adding a comonadic modality □ to the theory,
for example using the framework MTT [15] with mode theory the walking adjunction or the
walking comonad. The new type □N will have a general induction principle and it should
be possible to define terms 𝑚, 𝑛 : N ⊢ 𝑓 (𝑚, 𝑛) : N given 𝑚 : □N, 𝑛 : N ⊢ 𝑓 (𝑚, 𝑛) : N and
𝑚 : N, 𝑛 : □N ⊢ 𝑔(𝑚, 𝑛) : N defined by simultaneous induction together with an extensionality
proof (𝑚, 𝑛 : N) ⊢ 𝑓 (𝜂𝑚, 𝑛) = 𝑔(𝑚, 𝜂𝑛).

A semantics playing the role of ⟦−⟧R , which we found most likely to be suitable, is as
follows. Let S denote the category of arities and functions between powers of natural numbers.
There is a category S ⋊ R with objects pairs of natural numbers and morphisms (−→𝑢 ,−→𝑣 ) :
(S ⋊ R) ((𝑚, 𝑛), (𝑚′, 𝑛′)) consisting of 𝑚′ set-theoretic functions 𝑢𝑖 : ℕ

𝑚 → ℕ and 𝑛′ set-theoretic
functions 𝑣 𝑗 : ℕ

𝑚+𝑛 → ℕ such that for each 𝑥 : ℕ𝑚 the slice 𝑣 𝑗 (𝑥,−) is primitive recursive. The
projection 𝜋 : (S ⋊ R) → S has a right adjoint inclusion functor (−, 0), which is also left adjoint
to the functor + : (−→𝑢 ,−→𝑣 ) ↦→ (−→𝑢𝑣, ·). The induced string of adjunctions on presheaf categories
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gives the required dependent right adjoint comonadic modality +∗ ◦ (−, 0)∗ (c.f. [15, Lemma 8.2,
Theorem 7.1]). It is yet to be checked whether N can be soundly interpreted as y(0,1) in this
setting, or if changes to the base categories, sheafification or passing to MATT [31] are needed.

The category S ⋊R is reminiscent of the categorical semantics of Hofmann’s calculus BC𝜔 [18]
of polytime functions with safe recursion given by the combinator

saferec : □W→W→ (□W→W→W) →W

on binary strings 𝑊 , also used in a gluing argument ot show soundness w.r.t. polytime functions.
In fact, his construction inspired ours for primitive recursion and we expect that the BC𝜔 can be
extended to a dependently typed system using MTT (or MATT) in a similar fashion.

Further variants of BC𝜔 have been developed (c.f. [17, 19]). However, these critically hinge
on linear type systems. Hofmann’s linear recursive calculus for polytime programming has been
extended to a dependent type theory (see [2]) using an extension of quantitative type theory
(c.f. [3]). It is unclear how such a system might be extended to homotopy types, see, e.g., [28,
Sec. 1.7.4] for a discussion for quantitative type theory. Variants of linear homotopy type theory
have been developed [28, 30], but there is no general framework such as MTT which admits
intensional identity types, linear type formers, dependent types and homotopical interpretations.
The closest approximation is [24], but the syntax is complicated and it does not support dependent
types yet. Therefore, we do not believe that a univalent type theory for complexity classes using
substructural type formers is currently within reach.

An obvious question is whether the Primitive Recursive Dependent Type Theory can be
extended to a variant of Homotopy Type Theory (HoTT) [34]. In plain HoTT with univalence
added as an axiom there is not much hope since it is not computational. Currently, our best
hope is via Cubical Type Theory (CTT) [5, 12]. Its abstract syntax is already formally defined in
[33] so it is easy to make the necessary syntactic adjustments to its first universe. However, it is
not clear how the soundness proof should be adapted because CTT cannot be interpreted in Set.
One could for example require that the structure maps of a cubical set be primitive recursive
and embed Set into the resulting category. Even then, retracts of yN in a category of cubical
sets over R remain of homotopy level zero, so ⟦U0⟧R would require a fundamentally different
definition. Another approach would be to define the cubical model in Tpr itself.
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