
PRIMITIVE RECURSIVE DEPENDENT TYPE THEORY
LICS 2024

Johannes Schipp von Branitz1

Ulrik Buchholtz2

University of Nottingham

July 09, 2024

1https://jsvb.xyz
2https://ulrikbuchholtz.dk

https://jsvb.xyz
https://ulrikbuchholtz.dk


PRIMITIVE RECURSION
REMINDER

The basic primitive recursive functions are constant functions, the successor function and projections of
type Nn → N. A primitive recursive function is obtained by finite applications of composition of the
basic p.r. functions and the primitive recursion operator

primrec : N → (N× N → N) → N → N
primrec(g, h, 0) = g

primrec(g, h, k + 1) = h(k,primrec(g, h, k)).

The Ackermann function A : N → (N → N) given by

A(0) = (n 7→ n + 1)

A(m + 1) =

{
0 7→ A(m, 1)
n + 1 7→ A(m,A(m + 1,n))

grows faster than any p.r. function. It requires elimination into a function type.

1 / 8



PRIMITIVE RECURSION
REMINDER

The basic primitive recursive functions are constant functions, the successor function and projections of
type Nn → N. A primitive recursive function is obtained by finite applications of composition of the
basic p.r. functions and the primitive recursion operator

primrec : N → (N× N → N) → N → N
primrec(g, h, 0) = g

primrec(g, h, k + 1) = h(k,primrec(g, h, k)).

The Ackermann function A : N → (N → N) given by

A(0) = (n 7→ n + 1)

A(m + 1) =

{
0 7→ A(m, 1)
n + 1 7→ A(m,A(m + 1,n))

grows faster than any p.r. function. It requires elimination into a function type.

1 / 8



PRIMITIVE RECURSION
REMINDER

The basic primitive recursive functions are constant functions, the successor function and projections of
type Nn → N. A primitive recursive function is obtained by finite applications of composition of the
basic p.r. functions and the primitive recursion operator

primrec : N → (N× N → N) → N → N
primrec(g, h, 0) = g

primrec(g, h, k + 1) = h(k,primrec(g, h, k)).

The Ackermann function A : N → (N → N) given by

A(0) = (n 7→ n + 1)

A(m + 1) =

{
0 7→ A(m, 1)
n + 1 7→ A(m,A(m + 1,n))

grows faster than any p.r. function. It requires elimination into a function type.

1 / 8



PRIMITIVE RECURSIVE DEPENDENT TYPE THEORY
MAIN THEOREM

Let T be a dependent type theory with
▶ dependent pair types

∑
a:A B(a) and function types

∏
a:A B(a),

▶ inductive identity types,
▶ a universe U0 closed under Σ- and identity types (but not Π-types),
▶ a U0-small closed type N with the standard elimination principle for natural numbers

n : N ⊢ X(n) : U0 ⊢ g : X(0) n : N, x : X(n) ⊢ h(n, x) : X(n + 1)
n : N ⊢ indg,h(n) : X(n)

restricted to U0-small type families n : N ⊢ X(n) : U0,
▶ larger universes Uα closed under all type constructors,
▶ and the rule

Πn:NX(n) : U1.

Then the definable terms
n : N ⊢ f (n) : N

in T are exactly the primitive recursive functions.
2 / 8



PRIMITIVE RECURSIVE DEPENDENT TYPE THEORY
MAIN THEOREM

Let T be a dependent type theory with
▶ dependent pair types

∑
a:A B(a) and function types

∏
a:A B(a),

▶ inductive identity types,
▶ a universe U0 closed under Σ- and identity types (but not Π-types),
▶ a U0-small closed type N with the standard elimination principle for natural numbers

n : N ⊢ X(n) : U0 ⊢ g : X(0) n : N, x : X(n) ⊢ h(n, x) : X(n + 1)
n : N ⊢ indg,h(n) : X(n)

restricted to U0-small type families n : N ⊢ X(n) : U0,
▶ larger universes Uα closed under all type constructors,
▶ and the rule

Πn:NX(n) : U1.

Then the definable terms
n : N ⊢ f (n) : N

in T are exactly the primitive recursive functions.
2 / 8



PRIMITIVE RECURSIVE DEPENDENT TYPE THEORY
MAIN THEOREM

Let T be a dependent type theory with
▶ dependent pair types

∑
a:A B(a) and function types

∏
a:A B(a),

▶ inductive identity types,
▶ a universe U0 closed under Σ- and identity types (but not Π-types),
▶ a U0-small closed type N with the standard elimination principle for natural numbers

n : N ⊢ X(n) : U0 ⊢ g : X(0) n : N, x : X(n) ⊢ h(n, x) : X(n + 1)
n : N ⊢ indg,h(n) : X(n)

restricted to U0-small type families n : N ⊢ X(n) : U0,
▶ larger universes Uα closed under all type constructors,
▶ and the rule

Πn:NX(n) : U1.

Then the definable terms
n : N ⊢ f (n) : N

in T are exactly the primitive recursive functions.
2 / 8



PRIMITIVE RECURSIVE DEPENDENT TYPE THEORY
MAIN THEOREM

Let T be a dependent type theory with
▶ dependent pair types

∑
a:A B(a) and function types

∏
a:A B(a),

▶ inductive identity types,
▶ a universe U0 closed under Σ- and identity types (but not Π-types),
▶ a U0-small closed type N with the standard elimination principle for natural numbers

n : N ⊢ X(n) : U0 ⊢ g : X(0) n : N, x : X(n) ⊢ h(n, x) : X(n + 1)
n : N ⊢ indg,h(n) : X(n)

restricted to U0-small type families n : N ⊢ X(n) : U0,
▶ larger universes Uα closed under all type constructors,
▶ and the rule

Πn:NX(n) : U1.

Then the definable terms
n : N ⊢ f (n) : N

in T are exactly the primitive recursive functions.
2 / 8



PRIMITIVE RECURSIVE DEPENDENT TYPE THEORY
MAIN THEOREM

Let T be a dependent type theory with
▶ dependent pair types

∑
a:A B(a) and function types

∏
a:A B(a),

▶ inductive identity types,
▶ a universe U0 closed under Σ- and identity types (but not Π-types),
▶ a U0-small closed type N with the standard elimination principle for natural numbers

n : N ⊢ X(n) : U0 ⊢ g : X(0) n : N, x : X(n) ⊢ h(n, x) : X(n + 1)
n : N ⊢ indg,h(n) : X(n)

restricted to U0-small type families n : N ⊢ X(n) : U0,
▶ larger universes Uα closed under all type constructors,
▶ and the rule

Πn:NX(n) : U1.

Then the definable terms
n : N ⊢ f (n) : N

in T are exactly the primitive recursive functions.
2 / 8



PRIMITIVE RECURSIVE DEPENDENT TYPE THEORY
MAIN THEOREM

Let T be a dependent type theory with
▶ dependent pair types

∑
a:A B(a) and function types

∏
a:A B(a),

▶ inductive identity types,
▶ a universe U0 closed under Σ- and identity types (but not Π-types),
▶ a U0-small closed type N with the standard elimination principle for natural numbers

n : N ⊢ X(n) : U0 ⊢ g : X(0) n : N, x : X(n) ⊢ h(n, x) : X(n + 1)
n : N ⊢ indg,h(n) : X(n)

restricted to U0-small type families n : N ⊢ X(n) : U0,
▶ larger universes Uα closed under all type constructors,
▶ and the rule

Πn:NX(n) : U1.

Then the definable terms
n : N ⊢ f (n) : N

in T are exactly the primitive recursive functions.
2 / 8



PRIMITIVE RECURSIVE DEPENDENT TYPE THEORY
MAIN THEOREM

Let T be a dependent type theory with
▶ dependent pair types

∑
a:A B(a) and function types

∏
a:A B(a),

▶ inductive identity types,
▶ a universe U0 closed under Σ- and identity types (but not Π-types),
▶ a U0-small closed type N with the standard elimination principle for natural numbers

n : N ⊢ X(n) : U0 ⊢ g : X(0) n : N, x : X(n) ⊢ h(n, x) : X(n + 1)
n : N ⊢ indg,h(n) : X(n)

restricted to U0-small type families n : N ⊢ X(n) : U0,
▶ larger universes Uα closed under all type constructors,
▶ and the rule

Πn:NX(n) : U1.

Then the definable terms
n : N ⊢ f (n) : N

in T are exactly the primitive recursive functions.
2 / 8



MOTIVATION FOR CONSERVATIVE EXTENSION

▶ Variants of primitive recursion are used as base theory for reverse mathematics in which
theorems are encoded in a weak base system

▶ More expressive base system means less encoding

▶ Syntax is closer to proof assistants enabling formal verification

3 / 8



MOTIVATION FOR CONSERVATIVE EXTENSION

▶ Variants of primitive recursion are used as base theory for reverse mathematics in which
theorems are encoded in a weak base system

▶ More expressive base system means less encoding

▶ Syntax is closer to proof assistants enabling formal verification

3 / 8



MOTIVATION FOR CONSERVATIVE EXTENSION

▶ Variants of primitive recursion are used as base theory for reverse mathematics in which
theorems are encoded in a weak base system

▶ More expressive base system means less encoding

▶ Syntax is closer to proof assistants enabling formal verification

3 / 8



POTENTIAL FURTHER EXTENSIONS

▶ Finitary inductive types and type families, finitary induction-recursion, e.g. lists

▶ Primitive recursive universe of types – judgemental variant of internal p.r. Gödel encoding of
the codes in U0

▶ Primitive Recursive Homotopy/Cubical Type Theory – not clear how to adapt our adequacy
proof

4 / 8



POTENTIAL FURTHER EXTENSIONS

▶ Finitary inductive types and type families, finitary induction-recursion, e.g. lists

▶ Primitive recursive universe of types – judgemental variant of internal p.r. Gödel encoding of
the codes in U0

▶ Primitive Recursive Homotopy/Cubical Type Theory – not clear how to adapt our adequacy
proof

4 / 8



POTENTIAL FURTHER EXTENSIONS

▶ Finitary inductive types and type families, finitary induction-recursion, e.g. lists

▶ Primitive recursive universe of types – judgemental variant of internal p.r. Gödel encoding of
the codes in U0

▶ Primitive Recursive Homotopy/Cubical Type Theory – not clear how to adapt our adequacy
proof

4 / 8



PROOF OF CONSERVATIVITY BY LOGICAL RELATIONS
INGREDIENTS

▶ Synthetic Tait Computability
▶ Standard model

J−KSet : T → Set

with
JNKSet = N

▶ Model
J−KR : T → R

in a topos of sheaves on a category of arities and p.r. functions with coverage generated by
finite jointly surjective families, with the property that

R(JNKR, JNKR)

are exactly the primitive recursive functions N → N.

5 / 8



PROOF OF CONSERVATIVITY BY LOGICAL RELATIONS
INGREDIENTS

▶ Synthetic Tait Computability
▶ Standard model

J−KSet : T → Set

with
JNKSet = N

▶ Model
J−KR : T → R

in a topos of sheaves on a category of arities and p.r. functions with coverage generated by
finite jointly surjective families, with the property that

R(JNKR, JNKR)

are exactly the primitive recursive functions N → N.

5 / 8



PROOF OF CONSERVATIVITY BY LOGICAL RELATIONS
INGREDIENTS

▶ Synthetic Tait Computability
▶ Standard model

J−KSet : T → Set

with
JNKSet = N

▶ Model
J−KR : T → R

in a topos of sheaves on a category of arities and p.r. functions with coverage generated by
finite jointly surjective families, with the property that

R(JNKR, JNKR)

are exactly the primitive recursive functions N → N.

5 / 8



PROOF OF CONSERVATIVITY BY LOGICAL RELATIONS
COMBINING THE DATA

Using the global sections functor R(1R,−) we can combine the data of both models into a single
functor which we extend along the Yoneda embedding.

Set ↓ ρ̂

T̂ Set

T

ρ̂
y

ρ(X)=R(1R,JXKR)×JXKSet

J−KSet↓ρ̂

6 / 8



PROOF OF CONSERVATIVITY BY LOGICAL RELATIONS
FORM THE ARTIN GLUING

The comma category Set ↓ ρ̂ is a topos with an open geometric embedding T̂ ↪→ Set ↓ ρ̂ and closed
geometric embedding Set ↪→ Set ↓ ρ̂.

Set ↓ ρ̂

T̂ Set

T

⊣ ⊣

ρ̂
y

ρ(X)=R(1R,JXKR)×JXKSet

J−KSet↓ρ̂

7 / 8



PROOF OF CONSERVATIVITY BY LOGICAL RELATIONS
SYNTHETICALLY DEFINE A LOGICAL RELATION

Use the internal language of the topos Set ↓ ρ̂ to construct another model J−KSet↓ρ̂ which assigns
computability predicates to objects ρ(X).

Set ↓ ρ̂

T̂ Set

T

⊣ ⊣

ρ̂
y

ρ(X)=R(1R,JXKR)×JXKSet

J−KSet↓ρ̂

7 / 8



PROOF OF CONSERVATIVITY BY LOGICAL RELATIONS
EXTERNALISE

Any term
n : N ⊢ f (n) : N

of T is interpreted in Set ↓ ρ̂ as

N ∼= T(1T,N) T(1T,N) ∼= N

N× N ∼= ρ(N) ρ(N) ∼= N× N.

T(1T,f )

Jf KSet↓ρ̂∆N ∆N

R(1R,Ĵf KR)×Ĵf KSet

Since Ĵf KR is primitive recursive, so is Jf KSet.

8 / 8


	Primitive Recursion
	reminder

	Primitive Recursive Dependent Type Theory
	Main Theorem

	Motivation for Conservative Extension
	Potential Further Extensions
	Proof of Conservativity by Logical Relations
	Ingredients
	Combining the Data
	Form the Artin Gluing
	Synthetically Define a Logical Relation
	Externalise


