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PRIMITIVE RECURSION
REMINDER

The basic primitive recursive functions are constant functions, the successor function and projections of
type Nn → N. A primitive recursive function is obtained by finite applications of composition of the
basic p.r. functions and the primitive recursion operator

primrec : N → (N× N → N) → N → N
primrec(g, h, 0) = g

primrec(g, h, k + 1) = h(k,primrec(g, h, k)).

The Ackermann function A : N → (N → N) given by

A(0) = (n 7→ n + 1)

A(m + 1) =

{
0 7→ A(m, 1)
n + 1 7→ A(m,A(m + 1,n))

grows faster than any p.r. function. It requires elimination into a function type.
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PRIMITIVE RECURSIVE DEPENDENT TYPE THEORY
MAIN THEOREM

Let T be a dependent type theory with
▶ dependent pair types

∑
a:A B(a) and function types

∏
a:A B(a),

▶ inductive identity types,
▶ a universe U0 closed under Σ- and identity types (but not Π-types),
▶ a U0-small closed type N with the standard elimination principle for natural numbers

n : N ⊢ X(n) : U0 ⊢ g : X(0) n : N, x : X(n) ⊢ h(n, x) : X(n + 1)
n : N ⊢ indg,h(n) : X(n)

restricted to U0-small type families n : N ⊢ X(n) : U0,
▶ larger universes Uα closed under all type constructors,
▶ and the rule

Πn:NX(n) : U1.

Then the definable terms
n : N ⊢ f (n) : N

in T are exactly the primitive recursive functions.
2 / 8
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MOTIVATION FOR CONSERVATIVE EXTENSION

▶ Variants of primitive recursion are used as base theory for reverse mathematics in which
theorems are encoded in a weak base system

▶ More expressive base system means less encoding

▶ Syntax is closer to proof assistants enabling formal verification
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POTENTIAL FURTHER EXTENSIONS

▶ Finitary inductive types and type families, finitary induction-recursion, e.g. lists

▶ Primitive recursive universe of types – judgemental variant of internal p.r. Gödel encoding of
the codes in U0

▶ Primitive Recursive Homotopy/Cubical Type Theory – not clear how to adapt our adequacy
proof
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PROOF OF CONSERVATIVITY BY LOGICAL RELATIONS
INGREDIENTS

▶ Synthetic Tait Computability
▶ Standard model

J−KSet : T → Set

with
JNKSet = N

▶ Model
J−KR : T → R

in a topos of sheaves on a category of arities and p.r. functions with coverage generated by
finite jointly surjective families, with the property that

R(JNKR, JNKR)

are exactly the primitive recursive functions N → N.
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PROOF OF CONSERVATIVITY BY LOGICAL RELATIONS
COMBINING THE DATA

Using the global sections functor R(1R,−) we can combine the data of both models into a single
functor which we extend along the Yoneda embedding.

Set ↓ ρ̂

T̂ Set

T

ρ̂
y

ρ(X)=R(1R,JXKR)×JXKSet

J−KSet↓ρ̂
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PROOF OF CONSERVATIVITY BY LOGICAL RELATIONS
FORM THE ARTIN GLUING

The comma category Set ↓ ρ̂ is a topos with an open geometric embedding T̂ ↪→ Set ↓ ρ̂ and closed
geometric embedding Set ↪→ Set ↓ ρ̂.
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T

⊣ ⊣

ρ̂
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PROOF OF CONSERVATIVITY BY LOGICAL RELATIONS
SYNTHETICALLY DEFINE A LOGICAL RELATION

Use the internal language of the topos Set ↓ ρ̂ to construct another model J−KSet↓ρ̂ which assigns
computability predicates to objects ρ(X).
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PROOF OF CONSERVATIVITY BY LOGICAL RELATIONS
EXTERNALISE

Any term
n : N ⊢ f (n) : N

of T is interpreted in Set ↓ ρ̂ as

N ∼= T(1T,N) T(1T,N) ∼= N

N× N ∼= ρ(N) ρ(N) ∼= N× N.

T(1T,f )

Jf KSet↓ρ̂∆N ∆N

R(1R,Ĵf KR)×Ĵf KSet

Since Ĵf KR is primitive recursive, so is Jf KSet.
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