PRIMITIVE RECURSIVE DEPENDENT TYPE THEORY

Johannes Schipp von Branitz¹ (j.w.w. Ulrik Buchholtz²)

University of Nottingham

October 15, 2025

¹ jsvb.xyz

 $^{^2}$ ulrikbuchholtz.dk

PRIMITIVE RECURSION

REMINDER

The *basic primitive recursive functions* are constant functions, the successor function and projections of type $\mathbb{N}^n \to \mathbb{N}$. A *primitive recursive function* is obtained by finite applications of composition of the basic p.r. functions and the *primitive recursion operator*

$$\begin{split} \text{primrec} : \mathbb{N} &\to (\mathbb{N} \times \mathbb{N} \to \mathbb{N}) \to \mathbb{N} \\ & \text{primrec}(g, h, 0) = g \\ & \text{primrec}(g, h, k + 1) = h(k, \text{primrec}(g, h, k)). \end{split}$$

The *Ackermann function* $A : \mathbb{N} \to (\mathbb{N} \to \mathbb{N})$ given by

$$A(0) = (n \mapsto n+1)$$

$$A(m+1) = \begin{cases} 0 & \mapsto A(m,1) \\ n+1 & \mapsto A(m,A(m+1,n)) \end{cases}$$

grows faster than any p.r. function. Defining it requires elimination into a function type.

PRIMITIVE RECURSIVE DEPENDENT TYPE THEORY

MAIN THEOREM

Let T be a dependent type theory with

- dependent pair types $\sum_{a:A} B(a)$ and function types $\prod_{a:A} B(a)$,
- inductive identity types,
- \blacktriangleright a universe U₀ closed under Σ and identity types (but not Π -types),
- ▶ a U₀-small closed type N with the standard elimination principle for natural numbers

$$\frac{n: \mathbb{N} \vdash X(n): \mathbb{U}_0 \qquad \vdash g: X(0) \qquad n: \mathbb{N}, x: X(n) \vdash h(n, x): X(n+1)}{n: \mathbb{N} \vdash \operatorname{ind}_{g,h}(n): X(n)}$$

restricted to U₀-small type families $n : N \vdash X(n) : U_0$,

- \blacktriangleright larger universes U_{α} closed under all type constructors,
- and the rule

$$\Pi_{n:N}X(n): \mathbf{U}_{\max(1,\alpha)}$$

for
$$X(n): U_{\alpha}$$
.

Then the definable terms

$$n : N \vdash f(n) : N$$

in T are exactly the primitive recursive functions in the standard model.

MOTIVATION FOR CONSERVATIVE EXTENSION

A PRIORI BENEFITS

- ➤ Variants of primitive recursion are used as base theory for reverse mathematics in which theorems are encoded in a weak base system
- ► More expressive base system means less encoding
- ▶ Syntax is closer to proof assistants enabling formal verification

POTENTIAL FURTHER EXTENSIONS

UNIVALENT TYPE THEORY

- ▶ Book HoTT hopeless univalence does not compute
- ▶ Abstract syntax for Cubical TT well defined, but not modelled by Set
- \blacktriangleright Retracts of y_N in cubical sets over p.r. base category remain of homotopy level zero

POTENTIAL FURTHER EXTENSIONS

REFLECTION

- ightharpoonup Can internally define syntax as inductive type and encoding [-]: Term₀ \rightarrow N
- ▶ Might be large, does not capture syntax up to judgemental equality
- ▶ Instead, could add type \tilde{U}_0 : tp_0 with $tm_0\tilde{U}_0 = tm_0U_0$
- ▶ Obtain code u_0 : tm_0U_0 for all types tp_0
- ightharpoonup No Π-types ightharpoonup no Girard's paradox

POTENTIAL FURTHER EXTENSIONS

INDUCTIVE CONSTRUCTIONS

- ► Large elimination principle
- ► Finitary inductive types and type families, finitary induction-recursion, lists, finitary function types
- ► U₀-fragment interpretable in arithmetic universes
- Modular semantic proof easy to adapt
- ► Important for convenience of programming

STATE AND CHALLENGES

- ► Many settings for synthetic mathematics exist
 - Primitive recursion restricted function types
 - Tait computability Artin gluing, topological modalities
 - Algebraic geometry $PSh(k-Alg^{op})$
 - Topology $Sh(\mathbb{R}^n)$, $Sh(2^{\mathbb{N}})$
 - Differential geometry, domain theory, probability theory, category theory, homotopy theory, condensed mathematics
- ► How to unify?
- ► How to mechanise externalisation?
- ► How to reflect?
- ► How to achieve base independence?
- ► How to deal with non-geometric sequents?

CURRENT APPROACHES

- ► MTT/MATT (Gratzer/Shulman) no universal properties
- ► Fully geometric type theory (Vickers) no function types
- ► Arithmetic type theory (Vickers) base independece
- ► Synthetic topos theory (Uemura)
- ightharpoonup Generalised (propositional) (∞)-geometric type theory (JSvB, Buchholtz, Williams)

PRINCIPLES SYNTHETIC MATHEMATICS FOR SYNTHETIC MATHEMATICS

- Nullstellensatz (Blechschmidt) Internally to $[\mathbb{T}]$, the universal model $U_{\mathbb{T}}$ satisfies a geometric* sequent σ iff the theory of $U_{\mathbb{T}}$ -algebras proves σ
- ► Synthetic Quasicoherence / Blechschmidt duality:

$$A \simeq \mathbb{T}\text{-Alg}(A, U_{\mathbb{T}}) \to \mathbb{T}$$

- Quasicoherent induction (David Jaz Myers) classifying toposes for homomorphisms satisfy directed path induction
- ▶ Directed univalence (Barton, Commelin)

$$\prod_{A,B: \text{ODisc}} (A \to B) \simeq \sum_{\gamma: \mathbb{S} \to \text{ODisc}} \gamma(\bot) = A \times \gamma(\top) = B$$

► Local Choice (Synthetic Stone Duality; Cherubini, Coquand, Geerlings, Moenclaey) – Surjections onto affine objects admit sections on a cover

Generalised (Propositional) (∞)-geometric type theory

- ► Consider sheaves on category of small-presented locales (resp. toposes) with open cover (resp. étalé) topology
- ► Have duality for internal small-presented frames *A*:

$$A \simeq \mathbb{S}\text{-Alg}(A, \mathbb{S}) \to \mathbb{S}$$

► Size issues