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PRIMITIVE RECURSION
REMINDER

The basic primitive recursive functions are constant functions, the successor function and projections of
type Nn → N. A primitive recursive function is obtained by finite applications of composition of the
basic p.r. functions and the primitive recursion operator

primrec : N → (N× N → N) → N → N
primrec(g, h, 0) = g

primrec(g, h, k + 1) = h(k,primrec(g, h, k)).

The Ackermann function A : N → (N → N) given by

A(0) = (n 7→ n + 1)

A(m + 1) =

{
0 7→ A(m, 1)
n + 1 7→ A(m,A(m + 1,n))

grows faster than any p.r. function. Defining it requires elimination into a function type.
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PRIMITIVE RECURSIVE DEPENDENT TYPE THEORY
MAIN THEOREM

Let T be a dependent type theory with
▶ dependent pair types

∑
a:A B(a) and function types

∏
a:A B(a),

▶ inductive identity types,
▶ a universe U0 closed under Σ- and identity types (but not Π-types),
▶ a U0-small closed type N with the standard elimination principle for natural numbers

n : N ⊢ X(n) : U0 ⊢ g : X(0) n : N, x : X(n) ⊢ h(n, x) : X(n + 1)
n : N ⊢ indg,h(n) : X(n)

restricted to U0-small type families n : N ⊢ X(n) : U0,
▶ larger universes Uα closed under all type constructors,
▶ and the rule

Πn:NX(n) : Umax(1,α)

for X(n) : Uα.
Then the definable terms

n : N ⊢ f (n) : N

in T are exactly the primitive recursive functions in the standard model.
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MOTIVATION FOR CONSERVATIVE EXTENSION
A PRIORI BENEFITS

▶ Variants of primitive recursion are used as base theory for reverse mathematics in which
theorems are encoded in a weak base system

▶ More expressive base system means less encoding

▶ Syntax is closer to proof assistants enabling formal verification
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POTENTIAL FURTHER EXTENSIONS
UNIVALENT TYPE THEORY

▶ Book HoTT hopeless – univalence does not compute

▶ Abstract syntax for Cubical TT well defined, but not modelled by Set

▶ Retracts of yN in cubical sets over p.r. base category remain of homotopy level zero
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POTENTIAL FURTHER EXTENSIONS
REFLECTION

▶ Can internally define syntax as inductive type and encoding ⌈−⌉ : Term0 → N

▶ Might be large, does not capture syntax up to judgemental equality

▶ Instead, could add type Ũ0 : tp0 with tm0Ũ0 = tm0U0

▶ Obtain code u0 : tm0U0 for all types tp0

▶ No Π-types → no Girard’s paradox
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POTENTIAL FURTHER EXTENSIONS
INDUCTIVE CONSTRUCTIONS

▶ Large elimination principle

▶ Finitary inductive types and type families, finitary induction-recursion, lists, finitary function
types

▶ U0-fragment interpretable in arithmetic universes

▶ Modular semantic proof easy to adapt

▶ Important for convenience of programming
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SYNTHETIC MATHEMATICS
STATE AND CHALLENGES

▶ Many settings for synthetic mathematics exist
• Primitive recursion – restricted function types
• Tait computability – Artin gluing, topological modalities
• Algebraic geometry – PSh(k−Algop)
• Topology – Sh(Rn), Sh(2N)
• Differential geometry, domain theory, probability theory, category theory, homotopy

theory, condensed mathematics

▶ How to unify?

▶ How to mechanise externalisation?

▶ How to reflect?

▶ How to achieve base independence?

▶ How to deal with non-geometric sequents?
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SYNTHETIC MATHEMATICS
CURRENT APPROACHES

▶ MTT/MATT (Gratzer/Shulman) – no universal properties

▶ Fully geometric type theory (Vickers) – no function types

▶ Arithmetic type theory (Vickers) – base independece

▶ Synthetic topos theory (Uemura)

▶ Generalised (propositional) (∞)-geometric type theory (JSvB, Buchholtz, Williams)

8 / 10



SYNTHETIC MATHEMATICS
PRINCIPLES SYNTHETIC MATHEMTICS FOR SYNTHETIC MATHEMATICS

▶ Nullstellensatz (Blechschmidt) – Internally to [T], the universal model UT satisfies a geometric*
sequent σ iff the theory of UT-algebras proves σ

▶ Synthetic Quasicoherence / Blechschmidt duality:

A ≃ T-Alg(A,UT) → T

▶ Quasicoherent induction (David Jaz Myers) – classifying toposes for homomorphisms satisfy
directed path induction

▶ Directed univalence (Barton, Commelin)∏
A,B:ODisc

(A → B) ≃
∑

γ:S→ODisc

γ(⊥) = A × γ(⊤) = B

▶ Local Choice (Synthetic Stone Duality; Cherubini, Coquand, Geerlings, Moenclaey) –
Surjections onto affine objects admit sections on a cover
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SYNTHETIC MATHEMATICS
GENERALISED (PROPOSITIONAL) (∞)-GEOMETRIC TYPE THEORY

▶ Consider sheaves on category of small-presented locales (resp. toposes) with open cover (resp.
étalé) topology

▶ Have duality for internal small-presented frames A:

A ≃ S-Alg(A, S) → S

▶ Size issues
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